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Abstract—We propose a surface meshing approach for 

computational electromagnetics (CEM) based on discrete surface 

Ricci flow (DSRF) with iterative adaptive refinement in the 

parametric domain for the automated generation of high-quality 

surface meshes of arbitrary element type, order, and count. 

Surfaces are conformally mapped by DSRF to a canonical 

parametric domain, allowing a canonical seed mesh to be mapped 

back to an approximation of the original surface. The new DSRF-

based meshing technique provides a framework for generation of 

meshes with high element quality, aimed to greatly enhance the 

accuracy, conditioning properties, stability, robustness, and 

efficiency of surface integral equation CEM solutions. We 

demonstrate the ability of the proposed DSRF technique to 

produce meshes with near-optimal element corner angles for 

complicated, highly-varied surfaces such as the NASA almond 

and a fighter jet model, using triangular, quadrilateral, and 

discontinuous quadrilateral elements. Other element types are 

also discussed. Where high-fidelity meshing is desired, the 

technique can capture fine-scale detail using very few high order 

elements. Where low-fidelity meshing is desired, DSRF with 

adaptive refinement can accurately recreate course-scale detail 

using standard first-order elements (e.g., flat triangular patches).   

 
Index Terms—automated surface meshing; computational 

electromagnetics; Ricci flow; higher-order methods; large-

domain modeling; mesh refinement; iterative adaptive 

refinement; method of moments; surface integral equation 

techniques; quadrilateral elements; triangular elements. 

I. INTRODUCTION 

ESH generation is a critical, yet largely neglected, aspect 

of research in computational electromagnetics (CEM). 

Surface discretization quality impacts the numerical solution 

of electromagnetics problems substantially, yet new surface 

integral equation (SIE) techniques seem to mostly defer this 

aspect due to its difficulty. New simulation techniques emerge 

and problem sizes grow, but a relatively static pool of surface 

meshing approaches must contend with an ever-increasing 

variety of surface mesh types, each with unique benefits but 

added geometric constraints. These constraints define an 

appropriate mesh quality for a specific application. Here, we 

use corner angle uniformity and the resolution of important 

surface features. Many promising MoM-SIE innovations 

simply cannot rely on existing meshing approaches to produce 

the required discretizations at any usable quality, limiting the 

applicability of new research and relegating practitioners to 

heavily-involved semi-manual meshing. SIE-based CEM 

methods also increasingly rely on numerical error estimate-

based adaptive refinement techniques to efficiently and 

dynamically modify problem discretizations during 

computation [1], necessitating the integration of complicated 

surface meshing algorithms with existing CEM software. As 

such, meshing approaches tailored toward CEM applications 

are of growing importance. 

Several existing surface mesh generation approaches are 

available to CEM researchers, but, to our knowledge, none 

allow for the automatic generation of meshes with user-

defined element type, count, and order. Moreover, first-order 

triangular mesh generation is well understood and often 

simple due to desirable topological properties of triangles as a 

2-simplex. For instance, see [2] for surface triangulation from 

arbitrary point clouds or [3] for improving existing triangular 

surface meshes. Triangular meshes can also be generated from 

arbitrary polygonal meshes by subdivision of any polygon [4] 

and are ubiquitous in SIE numerical methods, for instance, see 

[5]. First-order triangular surface meshing in CEM has relied 

largely on Delaunay triangulation-based meshing approaches 

due to their simplicity and robustness [6, 7, 8]. Unfortunately, 

applying the Delaunay triangulation directly limits its 

applicability strictly to 2D (plate) structures or 2D domains. 

Prior triangular surface meshing work in CEM has focused on 

refining and improving an existing triangle mesh using various 

implementations of node addition with local mesh 

rearrangement [9, 10, 11]; quad-tri conversion [12]; and 

iterative refinement beginning from manual vertex labels [13].  

Also common in CEM are first-order quadrilateral 

elements, but less so than first-order triangular, see for 

instance [14]. First-order quadrilateral mesh generation is 

more difficult, as approaches typically rely on direct tri-quad 

conversion [15, 16], patch-based methods [17, 18], Voronoi-

based methods [19], or parametrization-based methods [20, 

21, 22]. See [23] for a recent overview of the state of the art in 

quadrilateral mesh generation. Our proposed method, applied 

to quadrilateral meshing, is parametrization-based but 

maintains generality to other surface mesh types. 

Discontinuous quadrilateral meshes, in which adjacent 
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quadrilaterals need not share entire edges, are simple to 

generate at high quality from existing continuous quadrilateral 

surface meshes by merging or subdividing chosen 

quadrilaterals [23]; see [24] for the advantages of 

discontinuous methods. We therefore first focus on continuous 

quadrilateral mesh generation but generalize to the 

discontinuous case by this property. Direct tri-quad conversion 

typically leads to poor mesh quality for most CEM 

applications (highly irregular elements with varied corner 

angles). Voronoi-based approaches can lead to quad-dominant 

meshes in which many triangles remain, raising issues for SIE 

solvers unable to handle both quadrilateral and triangular 

elements simultaneously. Patch-based methods, meanwhile, 

are not guaranteed to generate a complete mesh and can fail 

during the generation process [23]. So, they are unreliable for 

quintessential surfaces in CEM such as vehicles, antennas, or 

building environments. Parameterization-based approaches are 

typically the most robust, but little work has been done to 

optimize them or apply them for CEM applications except for 

parameter sweeping on 2D surface meshes [25]. Other CEM-

specific first-order quad meshing work has typically 

concerned iterative partitioning by sets of node placement 

rules [26, 27]. More recently, much first-order quad meshing 

research in CEM has relied on approaches that, although 

robust, are limited to mixed quad-tri meshes and therefore not 

applicable for methods relying on meshes of a single element 

type [28, 29, 30, 31].  

Beyond the well-known first-order techniques, higher-order 

methods are of growing interest in CEM. Such techniques 

have shown great promise reducing the system dimension for 

comparable or higher accuracy in MoM-SIE solvers, thereby 

reducing the computation time and/or increasing accuracy 

substantially [32, 33], but the complexity of generating the 

needed higher-order quadrilateral or triangular meshes has 

limited the promised applicability for true large-domain 

modeling. Generating such meshes is often left out of scope 

[34], semi-manual, or, at best, unable to effectively generate 

large-domain elements, typically relying on the combination 

of several existing elements into larger high-order elements 

[32]. This can only be done on highly-structured meshes, with 

most others lacking the topology for merging elements to 

satisfy common geometric interpolation techniques. No robust 

meshing process has been developed for this application, and 

existing parametrization-based techniques, optimized for first-

order elements, are not well-suited to the task. Prior attempts 

to produce robust and broadly applicable higher-order 

quadrilateral and triangular surface meshing techniques have 

used existing high quality first-order meshes of the desired 

type and subsequently interpolated them [35, 36]. This 

approach is excellent where such meshes are available but 

cannot be used when such meshes are unavailable or difficult 

to produce at high quality, for instance when large-domain 

quadrilateral meshes are desired. Meshing, potentially the 

most challenging and restrictive component of higher order 

CEM, is a highly relevant open problem. 

This paper proposes an efficient and robust surface meshing 

technique applicable to any of the discussed mesh types and 

extensible easily to others. Able to seamlessly handle higher 

order and very high order elements, our technique can 

surmount the major barrier to widespread use of otherwise 

highly-efficient higher order methods. Due to its generality, 

our technique also constitutes a competitive low-order 

meshing approach useful for first-order triangular (flat 

triangles) and first-order quadrilateral mesh generation at high 

quality. By producing meshes with high corner angle 

uniformity, the technique can maintain high local regularity of 

surface Jacobians and high basis function orthogonality, 

preventing degeneration of the basis functions and associated 

increases in condition number. A parametrization-based 

approach, our technique leverages the discrete surface Ricci 

flow (DSRF) to map between an arbitrary triangulated mesh 

and an appropriate canonical parametric domain dependent on 

the underlying geometry of the original surface and desired 

mesh properties. A uniform seed mesh, known in the 

parametric domain, is then taken by this mapping to the 

original surface, on which a refinement indicator, defined for 

the choice of mesh type, is computed. The seed mesh is then 

refined in the parametric domain based on this indicator and 

the process is repeated until a stop criterion is met, for 

instance maximum element size or element count. Although 

we begin here with a triangular mesh of the original surface, in 

general we can begin with an arbitrary surface representation, 

which must be converted to a high-quality triangulation by 

sampling, subdivision, or surface reconstruction as appropriate 

to the type of surface representation, for instance using 

techniques from [2] or [4].  

We believe our approach to be the first demonstration of a 

surface meshing technique able to seamlessly handle arbitrary 

(low and high) geometric order and element type. 

Furthermore, this appears to be the first technique able to 

generate high-quality very high order quadrilateral elements; 

the lack of such a technique previously constituting the main 

shortcoming of large-domain methods [32, 34]. We 

demonstrate our technique for a variety of common mesh 

types used for low-order and higher order MoM-SIE methods 

including triangular, quadrilateral, and discontinuous 

quadrilateral, and offer suggestions for simple extension to 

other, less common element types. For each of these types, we 

maintain generality in element order and show typical results 

for first-order (lowest-order), e.g., flat triangular patches, as 

well as higher-order elements. For the latter, we demonstrate 

meshes using both Lagrange interpolation and cubic spline 

interpolation, again offering suggestions for extension to other 

interpolation methods. We focus here on the application of 

this technique to MoM-SIE in CEM but do not limit its 

usefulness to only this application. Some preliminaries of this 

work are presented in a summary form in [37, 38, 39].  

We note a few limitations of the proposed method. Firstly, 

the method as presented does not enforce continuity for multi-

part objects. To work for such cases in practice, the method 

therefore requires either a discontinuous Galerkin solver or 

special treatment at part interfaces to enforce continuity. The 

adaptive refinement we present here also does not guarantee 

perfect sampling of the original surface on non-differentiable 

features (i.e., sharp edges). The error due to imperfect 

sampling of sharp features drops asymptotically to zero with 

increased iteration but may be unacceptable where perfect 

preservation of sharp features at otherwise low mesh fidelity is 

required. Although all refinement methods we present scale as 

 (     ) with the number of iterations, the time complexity 
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of the DSRF with the number of triangles remains formally 

unknown and is likely the asymptotically dominant factor. We 

are aware of no study of DSRF scaling with respect to the 

triangle count, and we consider such a derivation involved 

enough to warrant its own, separate study. With respect to 

multiple parameters, DSRF scales formally as  (      ), 

where    is the number of triangles in the original mesh,    is 

the average number of iterations required to solve the Hessian 

system to a chosen tolerance, and    is the number of Newton 

method iterations required to meet a tolerance on the curvature 

error. The open problem is relating    and    to   . We hope 

to address these limitations and perform a rigorous study of 

DSRF scaling in future work. 

We begin by summarizing our method and recapitulating 

the mathematics of DSRF, tailored specifically to be 

understandable and useful to the CEM community. We 

encourage readers interested in a more-formal, in-depth 

theoretical discussion with additional implementation details 

to review [40]. We use the same notation where possible. We 

then describe iterative adaptive refinement and offer specific 

implementations for common mesh types. Then, we present a 

variety of meshes produced by the method as well as statistics 

on mesh corner angle uniformity, a common measure of 

quality. For the examples given in the present manuscript, we 

focus on the common, important case where our surface is 

simply connected, closed, and has one symmetry plane, 

allowing us to reduce to the Euclidean case by cutting the 

surface along the plane of symmetry. This simplifies both 

computation and presentation of the DSRF. In future work, we 

plan to similarly demonstrate the method for surfaces 

requiring spherical or hyperbolic DSRF. We apply the method 

to the NASA almond, an established CEM benchmarking 

shape usually used to demonstrate difficulty of surface 

modeling given its one sharp end. We also show meshing 

results for a far more-complicated, and therefore challenging, 

fighter-jet model. For each of these models, we show 

continuous triangular, continuous quadrilateral, and 

discontinuous quadrilateral surface meshes of both low and 

high geometric order. We conclude with a discussion of the 

potential of the new DSRF meshing technique with adaptive 

refinement. 

II. SUMMARY OF THE METHOD AND COMPUTING THE DSRF 

Popularized by its role in Perelman’s 2006 proof of the 

Poincaré conjecture [41], Ricci flow offers a mathematical 

framework for diffusing irregularities in the metric of a 

Riemannian manifold. In the context of this work, surface 

Ricci flow, by the discrete formulation described in [42], 

allows the generation of a conformal (angle-preserving) 

mapping between a surface of choice, and a homeomorphic 

(or non-homeomorphic, given a suitable cut graph) surface of 

prescribed Gaussian curvature, here constituting a parametric 

domain for the mesh and referred to as the prescribed surface. 

For instance, this allows the NASA almond to be mapped to 

the unit sphere or, as we demonstrate in this paper, cut and 

mapped to the plane. Information on the prescribed surface 

can then be conformally mapped back to the original surface. 

In our application, this information comprises element 

vertices, and in our higher order cases, element sample points.   

 Since much of the material covered in this paper is likely 

unfamiliar to CEM audiences, we begin with a high-level 

summary of the method before presenting the theory in more 

detail. As a concrete example, we demonstrate each step for a 

simple ellipsoid cut along a plane of symmetry for which we 

want to produce a structured quadrilateral mesh. The basic 

steps of the method are as follows.  

 

1. If it is not already, convert the surface into a triangle mesh, 

shown in Fig. 1(a) for the cut ellipsoid 

2. Obtain a mapping between the original surface and a 

simple prescribed surface by DSRF. The cut ellipsoid 

triangle mesh mapped to a rectangular prescribed surface 

is shown in Fig. 1(b). 

a. Choose a simple surface in which we can easily 

manipulate mesh topology (e.g. a flat rectangle) 

b. Assign a target curvature to each point in the 

original triangle mesh consistent with the prescribed 

surface 

c. Perform the DSRF to compute locations of vertices 

from the triangle mesh when flattened to the 

prescribed surface 

3. Apply the mapping to resample the original surface 

adaptively, manipulating mesh topology in the parametric 

domain. A uniform quadrilateral sampling is shown 

overlaid on Fig. 1(b) and an adaptive sampling is shown 

overlaid in Fig. 1(c). 

a. Define a simple seed mesh that covers the prescribed 

surface 

b. Define a refinement indicator and refinement 

method appropriate for the target mesh type and 

quality measure 

c. Compute the refinement indicator for the seed mesh 

d. Refine the seed mesh using the refinement method, 

based on computed values of the refinement 

indicator 

e. Iterate steps d and e until some stop criterion is met 

(number of steps, maximum element size threshold, 

etc.) 

 

 

         
Fig. 1. Original triangle mesh for a cut ellipsoid (a), triangle mesh in the 

parametric domain with uniform structured quadrilateral sampling (b), and 

adaptive structured quadrilateral sampling (c) overlaid. Vertices in red are 

assigned   ⁄  curvature. All other vertices are assigned zero curvature. 
 

(a) 

(b) (c) 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TAP.2020.3008657

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



 4 

Step 1 is simple for almost all surface descriptions, so we 

consider it outside the scope of this paper.  

Step 2 is described in the remainder of this section in detail, 

but we offer key considerations here: The surface of 

prescribed curvature can be arbitrary but should be a surface 

on which it is simple to manipulate mesh topology. We use the 

simple and broadly-applicable example of a flat Euclidean 

rectangle for this paper.  

Step 3 is described in section III in detail, but to summarize: 

The mapping produced by DSRF does not preserve relative 

area. This can cause details from the original surface to be 

missed when a uniform sampling of the parametric domain is 

used. The goal of adaptive refinement (AR) is to distribute 

mesh sample points to mitigate this. 

Figure 2 compares quadrilateral surface meshes obtained for 

the example ellipsoid using a nonconformal versus conformal 

mapping. Figure 3, meanwhile, shows angle histograms for the 

three meshes in Fig. 1, demonstrating the desirability of a 

conformal approach. 

 

 

 

 
Fig. 2. 20×20 structured quadrilateral meshes mapped to an ellipsoid using (a) 

a nonconformal mapping; (b) a conformal mapping by DSRF, parametric 

domain sampling shown Fig. 1(b); and (c) a conformal mapping using DSRF 

with adaptive refinement, parametric domain sampling shown Fig. 1(c),  to 

capture more detail in regions of high curvature. 

 

 
Fig. 3. Corner angle histograms for 20×20 structured quadrilateral meshes 

show in Fig 2. Nonconformal mesh has a poor corner angle distribution while 

meshes obtained using DSRF have distributions concentrated closely around 

90 degrees. 

 The result of Step 1, we denote our original triangle mesh 

Σ = (V, E, F) where V, E, and F are the sets of vertices, edges, 

and faces composing the mesh, respectively. Here we assume 

our mesh represents the boundary of a realizable three-

dimensional (3D) object, i.e., the surface does not intersect 

itself, is continuous, and is finite. We refer to this as the initial 

surface. The initial surface may either be closed or have a 

boundary (a one-dimensional curve in 3D space) ∂Σ, as in our 

cut example case. By Step 2, we wish to deform this original 

surface to a much simpler, prescribed surface on which we can 

easily define and manipulate mesh topology. We denote the 

mapping of this surface to the parametric domain  ̅   
 ( ̅  ̅  ̅), and an associated map    ̅    from the 

parametric domain to the initial surface. The discrete Gaussian 

curvature of a surface is given by 

 

 ( )  {
    ∑   

  
            

   ∑   
  

                
,                                      (1)                                                                                                                       

 

where   refers to a given vertex and  ∑   
  

   denotes the sum 

of all triangle corner angles of which v is a part. Here   

denotes the index of  , and   
  

 denotes the corner angle 

formed by vertex     and two adjacent (connected by an edge) 

vertices with indices   and  . We define the Euler 

characteristic as, 

 

              .                                                            (2)                                                      

 

Here NV, NE, and NF represent the number of vertices, edges, 

and faces of the surface, respectively. With this, the Gauss-

Bonnet theorem asserts,  

 
∑  ( )         ,                                                          (3)                                     

 

with A denoting the total surface area of the mesh and the 

scheme coefficient term   determined by the chosen 

background geometry, taking a value of 0 for the Euclidean 

case.   takes a value of 1 for the case of a simply-connected 

half surface. For examples given in this paper, we consider 

only the Euclidean background geometry and simply-

connected half surface, but plan to give more-complicated 

examples for spherical and hyperbolic background geometry 

in future work. 

 Once a prescribed surface is selected, a target curvature 

 ̅( ) is chosen constrained by (2). For instance, using 

Euclidean background geometry on an open surface (produced 

by cutting a closed surface along its symmetry plane) and 

mapping to the Euclidean plane, the total curvature of    can 

be allocated to four boundary vertices (highlighted red in Fig. 

1), assigning each curvature   ⁄ . These vertices will then 

become the vertices of a rectangular image of the original 

surface in the Euclidean plane after mapping, shown Fig. 1(b-

c). Here, we chose these four vertices to be evenly-spaced on 

the boundary of the cut surface. By assigning zero curvature to 

the non-boundary vertices, we enforce that they fall on a flat 

plane shared by neighboring vertices. Similarly, by assigning 

all other boundary vertices zero curvature, we enforce that 

they fall on a straight line shared by neighboring boundary 

(a) 

(b) 

(c) 
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vertices. Once the target curvature is selected, the discrete 

surface Ricci flow semi-discrete system 

 
   ( )

  
    ̅    ( )                                                               (4)                                                        

 

can be solved by any number of standard numerical methods 

to obtain the final conformal mapping between surfaces. The 

above semi-discrete form retains continuous time,  , which in 

practice is discretized into a finite set of iterations. A nonlinear 

equation, (4) must be solved iteratively. For a thorough 

background on computing the Hessian of the Ricci energy for 

this system and applying it through Newton’s method to 

obtain the final mapping, see [40]. We give a brief overview 

here. 

 To compute and solve the DSRF system, we must define 

several discrete parameters and structures over Σ. We first 

define a circle packing metric. We associate with each vertex 

     nonnegative radius    corresponding to a circle 

centered on   . We also define a real-valued discrete 

conformal structure coefficient on E denoted  . Together with 

the scheme coefficient from (3), our circle packing metric is 

then defined by the tuple (       ), from which we can then 

determine any edge length        between vertices        

 . Defining the discrete conformal factor    for the Euclidean 

case, 

 

        ,                                                                             (5)                   

 

we can compute      by  

 

   
       

         
       

                                            (6) 

 

The   coefficients and range of the conformal structure 

coefficient for several common circle packing schemes [40] 

are defined in Table I. We use inversive distance circle 

packing for the results presented in this paper. 

 
Table I. Range of conformal structure coefficient and   coefficient values for 

common circle packing schemes.  

Scheme           

Thurston’s [0,1] +1 +1 

Tangential +1 +1 +1 

Virtual radius > 0 -1 -1 

Inversive Distance > 0 +1 +1 

 

With a circle packing scheme defined and chosen, we can 

now solve the DSRF system (4) iteratively as follows. At 

every iteration we begin by computing all circle radii    from 

the discrete conformal factor (5). Following this, we use   and 

  values to compute all edge lengths by application of (6). 

From the edge lengths, we compute the corner angles   
  

 from 

the cosine law appropriate to Euclidean background geometry,  

 

  
    

    
             ,                                                   (7)   

 

and subsequently the vertex curvature K from the angle deficit 

(1). We then compute the Hessian matrix, H, from the local 

(face) Hessian matrices:  

 
 (        )

 (        )
  

 

  
                                                            (8)                                                                           

 

where  

 

  [

 (  )   
  (  )  

   (  )

]                                                     (9)                                                        

 

        (  ) (  )                                                             (10)                                                   

 

and  

 

   [

  (     )  (     )
 (     )   (     )
 (     )  (     )  

]                                 (11)                                                      

 

Although we maintain consistency with [40] here, for the 

Euclidean case we have simply that 

 

 ( )                                                                                  (12) 

 

and 

 

 (     )  
  
      

      
 

 
                                                      (13) 

 

Finally, we solve the linear system 

 

      ̅                                                                        (14)                                                

 

for   , updating the discrete conformal factor to be used in the 

next iteration as 

 

  
 
←        .                                                                    (15)                                                       

 

This process is iterated until a convergence criterion is met, 

most simply until the maximum difference between the 

current and target discrete curvature falls below some 

threshold, i.e., until 

 

    | ̅    |                                                           (16)                                                         

  

From the final  ,  ,  , and   values, we can compute the final 

vertex locations in the target domain by flattening from a seed 

face as in [42]. For additional discussion of convergence rate, 

stability, and modifications to improve the robustness of the 

above approach, see [40, 43, 44]. 

Once the locations of all vertices are known in the 

parametric domain, any point within that domain can be 

mapped back to the initial surface using barycentric 

coordinates, defining a piecewise-linear approximation of M. 

A point p with parametric coordinate (u0, w0) in the parametric 

domain is found to lie in face f. If f has parametric vertices v1, 

v2, and v3, each with parametric coordinate of form (ui, wi) and 

nonparametric coordinate of form (xi, yi, zi), the image of p on 

the original surface, here denoted    with coordinate (x0, y0, 

z0), is given by  
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(        )  ∑   (        )
 
   ,                                          (17) 

 

where addition is understood component-wise and the 

Barycentric coordinates are given by 

 

   
|
          
          

|

 
                                                             (18a)                                                                 

   
|
          
          

|

 
                                                             (18b)                                                       

   
|
          
          

|

 
                                                            (18c)                                                      

 

with scaling factor  

 

  |
          

          
|                                                     (19)                                                          

III. ITERATIVE ADAPTIVE REFINEMENT 

By choosing a simple prescribed surface, we exert a high 

degree of control over the resultant re-mapping. However, the 

mapping produced by Ricci flow preserves only angles, not 

relative areas, so simply mapping a uniform grid of sample 

points from the prescribed surface to the surface of choice 

produces poor results for our application, leading to wide 

discrepancies in mesh fidelity between minimally-warped and 

highly-warped portions of the resulting surface mesh, as 

demonstrated in Fig. 2. Figure 4 motivates this from another 

perspective for the more-complicated cut fighter jet mesh. The 

parent jet mesh contained 115,967 triangles, and the DSRF 

took 14.3 seconds to compute on an i7 3770k at 3.50 GHz 

with a fully parallelized implementation. Fig. 4(a) shows the 

original triangle mesh, while Figs. 4(a) and (b) show the mesh 

mapped to the parametric domain and the degree of area 

warping, respectively. The induced area warping is highly 

concentrated and irregular.  

This is the motivation for beginning with an initial seed 

mesh and iteratively refining, an approach that allows the 

unknown degree of local warping to be compensated for 

adaptively. 

We describe here how to construct a mesh informed by 

some refinement indicator, in general motivated by either 

geometric error or numerical solution error estimates. 

Focusing on the geometric properties of the method, we offer 

specific examples of refinement indicators to reduce geometric 

error but maintain generality for easy application of the 

method to adaptive refinement (AR) based instead on solution 

error.  

Given    ̅   , we wish to construct a new surface mesh, 

 ̃   ( ̃  ̃  ̃), of arbitrary type. Beginning with a seed mesh 

 ̃  of the chosen mesh type in the parametric domain, we must 

define a refinement indicator,   ( ̃  ) and a refinement 

method  (    ̃ )    ̃   . We may then iterate Q on  ̃  N 

times, updating    at each iteration, to produce a final surface 

mesh  ̃    ̃ . N may be user-defined or may be a function of 

 ̃, e.g., some stop criterion like total element count or 

maximum element size. We give examples of such    and Q 

for a variety of common mesh types and offer suggestions to 

extend these to other mesh types. We also define the simplest 

seed mesh for each mesh type covered if Euclidean DSRF is 

used to map to a rectangle. Note that the refinement methods 

described here have linearithmic time complexity with the 

number of refinement iterations. 
 

 

 
 

Fig. 4. (a) Initial fighter jet surface. (b) Triangle mesh of fighter jet cut and 

conformally flattened to the plane with highly warped areas boxed in red. (c) 

Refinement indicator (normalized) for each quadrilateral element 

demonstrating high degree of warping at fighter jet fin, wing, and fuselage tip 

when uniform sampling is used.   

A. Continuous Structured Quadrilateral Meshes of Arbitrary 

Order 

Here we give an example of a refinement indicator and 

associated refinement method for the continuous quadrilateral 

case using Euclidean DSRF. For every edge    ̃, we find 

the Euclidean distance, d, between its endpoints, (x1, y1, z1) 

and (x2, y2, z2) in the nonparametric domain  

 

  √(     )
  (     )

  (     )
                      (20)                                                  

 

We assign such a distance to each    ̃, constituting 

  ( ̃  ) with domain  ̃. 

Starting from a seed mesh in the parametric domain 

consisting of one quadrilateral element aligned with the 

parametric coordinate axes as in Fig. 5(a), we find the row and 

column containing the edge with highest d for the vertical (w1 

= w2) and horizontal (u1 = u2) edges, respectively. We then 

subdivide the appropriate row and column in half in the 

parametric domain, taking one row to two rows and one 

column to two columns. This can be repeated N times and 

(c) 

(a) 

(b) 
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constitutes one possible  (    ̃ )    ̃   . Figures 5(b)-(c) 

show this subdivision process in the parametric domain for the 

fighter jet mesh from Fig. 4(a) for N = 2, N = 10, and N = 20 

iterations, respectively. 

Note that the example   given here constitutes only a 

simple and informative refinement method to produce a 

structured quadrilateral mesh. If unstructured meshes are 

permissible, any existing quadrilateral mesh refinement 

method could be used in the parametric domain, with the 

resulting mesh then mapped back to the original surface 

conformally. For instance, node-placement schemes like those 

in [26], [27], and [45] could be adapted to serve as the 

refinement method. 

If higher order elements are chosen, we may subsample  ̃  

in the parametric domain to produce the necessary 

interpolation nodes. For instance, if high order elements 

requiring a grid of k×k nodes per element are chosen, we may 

split each row and column of  ̃  k-2 times to obtain the 

necessary sample density. In this paper, to improve accuracy 

and maintain adaptivity for the given examples, we do this 

implicitly. If an L×L grid of higher order elements, each 

requiring k×k nodes, is chosen, we define N to be L(k-1)-1 to 

obtain the necessary sample points for all elements. For the 

given examples, we order higher order sample points for 

quadrilateral elements as defined in [32]. 

 

 

  
 

Fig. 5. Iterative adaptive refinement in the parametric domain for a 

continuous curved quadrilateral mesh of a fighter jet in Fig. 4(a) to increase 

mesh quality intelligently, with more elements being allocated to high density 

areas in the parametric domain, leading to a more-uniform final jet mesh: (a) 

seed mesh with one element aligned with coordinate axes in parametric 

domain, (b) refined mesh with N = 2 iterations, (c) refined mesh with N = 20 

iterations  

 

B. Continuous Triangular Meshes of Arbitrary Order 

We now give a similar example for the continuous triangular 

case using Euclidean DSRF. For every edge    ̃, we again 

find the Euclidean distance, d, between its endpoints in the 

nonparametric domain (20). We assign such a distance to each 

   ̃, again constituting   ( ̃  ) with domain  ̃. For    ̃ 

with maximum   and parametric endpoints (u1, w1) and (u2, 

w2), we compute the parametric midpoint   as 

 

  (
     

 
 
     

 
) ,                                                             (21)                                                                                

 

and include it in the set of existing vertices in  ̃. We then 

update a Delaunay tessellation of this augmented  ̃ in the 

parametric domain to update  ̃ and  ̃ to include the added 

vertex. This can be repeated N times and constitutes a possible 

 (    ̃ )    ̃   . Figures 6(a)-(c) show similar parametric-

domain adaptive refinement results for N = 2, 50, and 100 

iterations, respectively. 

 

  
 

Fig. 6. Iterative adaptive refinement in the parametric domain for a 

continuous curved triangular mesh of a fighter jet in Fig. 4(a): (a) seed mesh 

with two elements in the parametric domain, (b) refined mesh with N = 50 

elements, and (c) refined mesh with N = 100 iterations.   
 

As in the continuous quadrilateral case, extension to higher 

order elements is simple, requiring only additional sampling of 

the mapping at interpolation nodes. For the examples given in 

this paper, we define higher order sample points for each 

triangle as in [32]. 
 

C. Discontinuous Quadrilateral Meshes of Arbitrary Order 

To define a suitable refinement indicator in the 

discontinuous quadrilateral case using Euclidean DSRF, we 

again compute (20) for all    ̃, beginning from the seed 

mesh defined for the continuous quadrilateral case and shown 

in Fig. 5(a). For e with maximum d, we split an adjacent face 

in the direction perpendicular to such e, introducing two new 

vertices and one new edge. Note that, although an edge may 

have two adjacent faces, it is in practice inconsequential which 

(a) 

(b) 

(a) 

(b) 

(c) 

(c) 
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face is split on a given iteration, as the unsplit face is 

guaranteed to be refined on a subsequent (typically the next) 

iteration, dependent on the number of edges with identical 

maximum d. Such face splitting constitutes a possible 

 (    ̃ )    ̃    and introduces one new face per iteration. 

Additional constraints could be imposed on which element to 

split at each iteration to satisfy potential requirements of 

specific discontinuous quadrilateral codes. For instance, if an 

implementation requires that one edge joins to at most two, 

conditions that would violate this if refined could be detected 

at each iteration, with e with the next highest d chosen instead. 

Figure 7 demonstrates this refinement method for various N on 

the jet fighter mesh with no such additional constraints. For 

extension to higher order, we sample on a quadrilateral-by-

quadrilateral basis and again use the sampling convention 

defined for higher order quadrilaterals in [32]. 
 

  
 

Fig. 7. Adaptive refinement for discontinuous quadrilaterals in the parametric 

domain: (a) N = 50 , (b) N = 100, and (c) N = 300 iterations.  
 

D. Continuous Unstructured Quadrilateral Meshes of 

Arbitrary Order 

Here we demonstrate how DSRF-AR can be used to convert 

an existing 2D meshing technique into a 3D surface meshing 

technique, in this case for continuous structured quadrilateral 

meshes. We begin with the 2D continuous quadrilateral 

subdivision method described in [45]. The method in [45] first 

refines elements uniformly by splitting each refined element 

into a 3×3 grid of quadrilaterals. A set of 4 irregular 

subdivision patterns is then applied to adjacent elements to 

repair any discontinuities introduced during refinement. To 

apply this method to 3D surfaces using our DSRF-AR 

approach, we again compute (20) for all    ̃. For e with 

maximum d, we split an adjacent face into a 3×3 grid of 

quadrilaterals. Any neighboring faces of the refined face are 

also refined uniformly if needed to maintain the criterion that 

no edge joins to more than 3. This is iterated until some stop 

criterion is met, after which the irregular subdivision templates 

from [45] are applied to repair all discontinuities. Note that no 

irregular element is ever subdivided, as this would lead to 

unbounded mesh quality deterioration. This constitutes 

another possible  (    ̃ )    ̃   . Figure 8 demonstrates 

this refinement method on the fighter jet mesh for several N. 

As in previous quadrilateral examples, extension to higher 

order constitutes quadrilateral-by-quadrilateral resampling 

using the convention defined in [32]. Note that, since [45] 

assumes square elements to maintain reasonable corner angles 

in the irregular subdivision templates, we use a different seed 

mesh here, splitting the rectangular parametric domain into 

approximately square elements (here 3). This can be 

automated by comparing the width and height of the 

rectangular parametric domain, subdividing it appropriately.  
 

  
 

Fig. 8. Adaptive refinement for continuous unstructured quadrilaterals in the 

parametric domain: (a) N = 5 (b) N = 10, and (c) N = 50 iterations.  

 

E. Generalization to Mesh Types Not Covered  

Although we have covered three common mesh types, we 

by no means wish to limit the applicability of DSRF with 

adaptive refinement to production of only continuous 

quadrilateral, continuous triangular, and discontinuous 

quadrilateral meshes. We hope the given examples offer clear 

guidance for generalizing to other mesh types, but we 

additionally give recommendations for generalization by 

offering the following guidance: it is crucial to choose 

  ( ̃  ) and especially  (    ̃ )    ̃   . to prevent the 

creation of malformed elements during refinement in the 

parametric domain. “Malformed” depends on the mesh type 

and user application, but typically is related to the regularity of 

corner angles and local Jacobian within and between elements. 

As  ( )     is conformal, malformed elements in the 

parametric domain become malformed elements in the final 

surface mesh.  

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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IV. RESULTS AND DISCUSSION 

A. Example Surface Meshes Produced by DSRF with 

Adaptive Refinement 

Here we demonstrate meshing by DSRF with adaptive 

refinement for the well-known NASA almond model and the 

complicated fighter jet model. Higher order elements were 

reconstructed using Lagrange interpolation as in [32] or cubic 

spline interpolation of the sample points on an element-by-

element basis. The same initial Σ used for all cases (one for 

the almond, one for the fighter jet). The DSRF was computed 

on these initial meshes and used to generate one   for each 

model. The parametric domain adaptive refinement methods 

described in Section III were then iterated through these 

mappings to produce a variety of surface meshes shown in 

Figs. 9-20. We show the robustness of the proposed technique 

to recreate complicated surfaces for arbitrary mesh types with 

arbitrary element counts and orders, for instance accurately 

representing the fighter jet model with as few as 32 elements. 

We are not aware of any other meshing technique that can 

reliably produce such large-domain meshes. 

Figure 9(a) shows a high-resolution higher order continuous 

quadrilateral surface mesh generated using DSRF with the 

refinement scheme outlined in Section III.A. Figure 9(b) 

shows the equivalent surface mesh instead using uniform 

sampling in the parametric domain. All parameters including 

element count, element order, Σ, and M were identical 

between Figs. 9(a) and 9(b). Spline interpolation was chosen 

in both cases. Extreme loss of fidelity can be seen around the 

fuselage tip and wing tips in the uniformly-sampled case, 

these details meanwhile excellently captured in the adaptive 

case. This shows not only the importance but also the 

effectiveness of the proposed adaptive sampling methods for 

accurately capturing detail in the desired model.  

Figure 10 shows the same mesh as Fig. 9(a) from an oblique 

angle, making the high fidelity with which the adaptive 

sampling technique captures fine detail in the initial surface 

apparent. A comparison between this higher order continuous 

quadrilateral mesh and the 1st-order triangular mesh (chosen 

for Σ and shown in Fig. 4(a)) shows the near perfection with 

which this instance of  ̃ recreates the original surface. A 

similar result is shown in Fig. 11 for the NASA almond, here 

using 32 16th-order continuous quadrilateral elements with 

Lagrange interpolation. The parent almond mesh contained 

2,023 triangles and the DSRF took 0.168 seconds to compute. 

Adaptive sampling was also used for Fig. 11 as outlined in 

Section III.A. Note that, for most practical use cases, such 

large, curved elements would be supported by extremely high-

order current expansions, most importantly to compensate for 

their large electrical size.  

Figures 12 and 13 show 1st-order discontinuous 

quadrilateral meshes generated using the technique outlined in 

Section III.C. Figure 12 shows the fighter jet model recreated 

using 6490 1st-order elements, while Fig. 13 shows the NASA 

almond featuring 2000 elements of the same type. In both 

cases, the original surface is well-reconstructed. 

Figures 14 and 15 show higher-order analogues of Figs. 12 

and 13, now using 300 30th-order and 300 10th-order 
  

 
 

 
Fig. 9. Comparing effects of adaptive iterative refinement vs. uniform sampling on mesh quality: (a) continuous quadrilateral mesh of a fighter jet in Fig. 4(a) 

with 32 64th-order elements using DSRF with iterative adaptive refinement outlined in Fig. 5 and (b) the same using uniform sampling.  
 

(a) (b) 
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discontinuous quadrilateral elements, respectively. Spline 

interpolation was used in both cases. Note that roughness 

present on the almond surface in Fig. 15 is not an artifact of 

the proposed meshing technique, but rather shows an accurate 

recreation of roughness due to 1st-order triangular facets in the 

original almond mesh chosen as Σ.  
 

 
Fig. 10. Fighter jet model featuring as few as 32 64th-order quadrilateral elements in Fig. 9(a) viewed from oblique angle. Note excellent curvature/detail 

modeling with hyper-large hyper-curved quadrilateral patches. 

 

 

Fig. 11. NASA almond model using adaptive refinement from Fig. 5 with only 32 16th-order continuous quadrilateral elements.  

 
Fig. 12. Fighter jet model constructed from 6490 1st-order discontinuous quadrilateral elements using iterative adaptive refinement from Fig. 7. 
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Fig. 13. NASA almond model featuring 2000 1st-order discontinuous quadrilateral elements obtained by the adaptive refinement technique from Fig. 7. 

 

Fig. 14. Fighter jet model composed of 300 30th-order discontinuous quadrilateral elements by the technique in Fig. 7. 

 
 

 

Fig. 15. NASA almond model using refinement from Fig. 7 with 300 10th-order discontinuous quadrilateral elements. 

 
Figure 16 shows a low-resolution meshing of the fighter jet 

model using 2898 first-order triangular elements. Adaptive 

sampling was used as outlined in Section III.B. Despite the 

low element count and lowest possible geometric order, the 

model is well represented at coarse-scale, showing that the 

proposed method works well even as a first-order triangular 

mesher.  

Figures 17 and 18 show higher order triangular meshes for 

the fighter jet and almond, respectively, using the technique 

outlined in Section III.B. The fighter jet was meshed using 

3702 10th-order elements interpolated by cubic spline, while 

the almond was meshed using 1098 10th-order elements 

interpolated using Lagrange polynomials. We see good 

fidelity in both cases. Note that roughness from facets in Σ can 

again be seen in Fig. 18, similar to Fig. 15. 

Figures 19 and 20 show first order quadrilateral meshes for 

the fighter jet and almond, respectively, using the technique 

from Section III.D. The fighter jet was meshed using 4562 

first order elements while the almond was meshed using 1544 

first order elements. Detail from the original surfaces is 

captured well in these continuous quadrilateral meshes despite 

their low element count and low order. 
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Fig. 16. Low-resolution fighter jet model using 2898 1st-order continuous triangular elements with adaptive refinement as in Fig. 6. 

 
Fig. 17. Fighter jet model featuring 3702 10th-order continuous triangular elements generated by the iterative adaptive refinement technique in Fig. 6. 

 
Fig. 18. NASA almond model containing 1098 10th-order continuous triangular elements based on the adaptive refinement from Fig. 6. 

 
B. Corner Angle Measurements 

Here we demonstrate the conformality of the DSRF method with adaptive refinement for the almond and fighter jet models.   
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Fig. 19. Fighter jet model featuring 4562 1st-order continuous quadrilateral elements generated by the iterative adaptive refinement technique in Fig. 8. 

 

 
Fig. 20. NASA almond model containing 1544 1st-order continuous quadrilateral elements based on the adaptive refinement from Fig. 8. 

 

For the given examples, we sample both the jet and the 

almond in the parametric domain adaptively using the 

refinement indicator and refinement method given for the 

continuous quadrilateral case in Section III.A. Both meshes 

were sampled using N = 256 to obtain a dense sampling of the 

conformality of  ( ) for both models. Corner angles were 

computed for every vertex    ̃ in the resulting surface 

meshes, and histograms were produced from the resulting set 

of corner angles for each mesh and are shown in Fig. 21. Note 

that almost all corner angles are close or equal to 90°, 

indicating excellent conformality of the DSRF method. This is 

of utmost importance for many singularity-extraction 

techniques used in MoM that are not robust to poor corner 

angles, but otherwise offer excellent accuracy [32]. 

Additionally, the conformality of the method is critical to 

maintain high local orthogonality of the basis functions, 

thereby controlling system condition number.  

V. CONCLUSIONS 

This paper has addressed a crucial but largely under-

investigated aspect of modern computational electromagnetics 

research: surface mesh generation. We have introduced a 

robust surface meshing approach intended for use as a 

geometric discretization technique for MoM-SIE problems in 

electromagnetics but easily extensible to other applications. 

The proposed technique makes use of new mathematics that 
 

 
Fig. 21. Corner angle histograms for mappings generated using DSRF on 

continuous quadrilateral meshes. Mappings were sampled using a 256×256 

grid of sample points as in Fig. 5 for the fighter jet in Fig. 4(a) and the NASA 

almond, respectively. 
 

has, to our knowledge, not previously breached the field of 

CEM. The method uses the discrete surface Ricci flow to 

generate an accurate discrete conformal mapping from an 

input surface to a parametric domain in which a seed mesh is 

defined. Iterative adaptive refinement is then used to refine the 

seed mesh, from which the final surface mesh is produced by 
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an inversion of the mapping using barycentric interpolation. 

The novel proposed technique has been demonstrated capable 

of high-quality mesh generation for a variety of surface mesh 

types, given suitable refinement indicators and methods, 

including triangular, continuous quadrilateral, and 

discontinuous quadrilateral of both low and high order. We 

have defined example refinement indicators and methods for 

the studied mesh types and have offered guidelines for 

extension to mesh types not covered in this paper. 

The mesh generation results presented have shown that 

DSRF with adaptive refinement easily recreates even 

complicated initial surfaces using several mesh types over a 

large range of orders and fidelities. The ability of the new 

DSRF-based meshing technique to produce high quality 

meshes even for complicated, highly-varied surfaces has been 

demonstrated for the NASA almond and a fighter jet model. 

Where high-fidelity meshing is desired, the proposed DSRF 

technique has been able to capture fine-scale detail using very 

few high order elements, here demonstrated with as few as 32 

elements of up to 64th-order, unprecedented in the field of 

CEM. Where low-fidelity meshing is desired, DSRF with 

adaptive refinement has been able to accurately recreate 

course-scale detail using standard first-order elements. Corner 

angle measurements have shown that the generated discrete 

mappings are highly conformal, leading to excellent angle 

conservation between parametric and final surface meshes 

when inverse mapped, yielding meshes ideal of angle-

sensitive singularity extraction techniques used in MoM.  

While the DSRF method with adaptive refinement has been 

shown to be effective for the cases tested, we consider this the 

first publication in a relatively experimental line of research 

and appropriately, we have noted some drawbacks of the 

method as presented. The method is not applicable to 

complicated multi-part objects when continuity between 

meshes of individual parts is required. It is also not formally 

applicable to non-differentiable surfaces where perfect 

preservation of sharp (non-differentiable) features is required. 

The method can only asymptotically approach preservation of 

sharp features, so the error introduced may be unacceptable 

where sharp feature preservation on otherwise low-fidelity 

meshes is required. We therefore anticipate several areas for 

future work including improvement of refinement methods to 

include sharp-feature preference; extension to multi-part 

objects while maintaining mesh continuity between parts; 

improvements to the potentially poor computational scaling of 

the DSRF; and utilization with simulation-derived error data 

for adaptive refinement to mitigate not only geometric error 

during the meshing process, but also numerical error in CEM 

solvers. Additionally, we have only presented the method for 

the case of closed, simply connected surfaces with one 

symmetry plane using a cut and the Euclidean DSRF. We 

consider extending the present work, using the theory of [40] 

and more-complicated seed meshes, to arbitrary spherical and 

hyperbolic surfaces as a major component of future work 

toward broad applicability of the method. 

Overall, by leveraging the DSRF, we can provide a unified 

framework for generating low- or high-order surface meshes 

of arbitrary element type that integrates with any existing 

mesh reconstruction tool, to quickly remesh, refine, and 

optimize. Our DSRF-based technique facilitates the generation 

of high-quality discretizations, even for sub-optimal parent 

meshes, with demonstrations presented in this paper for the 

important quality measure of corner angle uniformity. The 

ability to automatically generate geometrically ultra-high 

order elements of high quality demonstrates significant 

advantages for practical application in CEM, both in reducing 

the number of unknowns and improving accuracy and 

robustness. Additionally, mesh refinement or full 

reconstruction (e.g., first-order triangle to ultra-high order 

quadrilateral and vice versa) is extremely inexpensive. A 

precomputed map from the parent surface and its 

parameterization enables this low-cost reconstruction and may 

assist many other common and desirable goals such as 

optimization. As such, DSRF meshes can be locally or 

globally refined efficiently motivated by geometric 

constraints, solution error constraints, or both.  

REFERENCES 

[1] S. Kim, “Error estimation and adaptive refinement technique in the 

method of moments,” Doctoral Thesis, Georgia Institute of Technology, 

May 2017. 

[2] J. Giesen and M. John, “Surface reconstruction based on a dynamical 

system,” Computer Graphics Forum, vol. 21, no. 3, pp. 363-371, 2002. 

[3] R. Renka, “Two Simple Methods for Improving a Triangle Mesh 

Surface,” Computer Graphics Forum, vol. 35, no. 6, pp. 46-58, 2016. 

[4] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, 

“Computational Geometry (2nd revised edition),” Springer-Verlag, 

2000. 

[5] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic 

scattering by surfaces of arbitrary shape,” IEEE Transactions on 

Antennas Propagation, vol. 30, no. 5, pp. 409–418, May 1982. 

[6] J. Ikaheimo, K. Forsman, and L. Kettunen, “Adaptive Mesh Generation 

in 2D Magnetostatic Integral Formulations,” IEEE Transactions on 

Magnetics, vol. 33, no. 2, pp. 1736-1739, Mar 1997. 

[7] Z. J. Cendes, D. Shenton, and H. Shahnasser, “Magnetic Field 

Computation Using Delaunary Triangulation and Complementary Finite 

Element Method,” IEEE Transactions on Magnetics, vol. mag-19, no. 6, 

pp. 2551-2554, Nov 1983. 

[8] M. M. Sakamoto, J. R. Cardoso, J. M, Machado, and M. Salles, “A 2-D 

Delaunay Refinement Algorithm Using an Initial Prerefinement From  

the Boundary Mesh,” IEEE Transactions on Magnetics,  vol. 44, no. 6, 

pp. 1418-1421, Jun 2008.  

[9] H. Tsuboi, T. Asahara, F. Kobayashi, and T. Misaki, “Adaptive 

Triangular Mesh Generation for Boundary Element Method in Three-

Dimensional Electrostatic Problems,” IEEE Transactions on Magnetics, 

vol. 34, no. 5, pp. 3379-3382, Sept 1998.  

[10] L. Janicke and A. Kost, “Error Estimation and Adaptive Mesh 

Generation in the 2D and 3D Finite Element Method,” IEEE 

Transactions on Magnetics, vol. 32, no. 3, pp. 1332-1337, May 1996.  

[11] S. Dafour, G. Vinsard, B. Laporte, and R. Moretti, “Mesh Improvement 

in 2-D Eddy-Current Problems,” IEEE Transactions on Magnetics, vol. 

38, no. 2, pp. 377-380, Mar 2002. 

[12] K. Virga and Y. Rahmat-Samii, “RCS Characterization of a Finite 

Ground Plane with Perforated Apertures: Simulations and 

Measurements,” IEEE Transactions on Antennas and Propagation, vol. 

42, no. 11, pp. 1491-1501, Nov 1994. 

[13] D. A. Lindholm, “Automatic Triangular Mesh Generation on Surfaces of 

Polyhedra,” IEEE Transactions on Magnetics, vol. mag-19, no. 6, pp. 

2539-2542, Nov 1983. 

[14] M. Kostic, B. M. Kolundzija, D. S. Sumic, and B. L. Mrdakovic, (2010). 

“Optimized quadrilateral mesh for higher order method of moment 

based on triangular mesh decimation,” Proceedings of the 2010 

Antennas and Propagation Symposium, 2010. 

[15] E. Catmull and J. Clark, “Recursively generated b-spline surfaces on 

arbitrary topological meshes,” Computer-aided Design, vol. 10, no. 6, 

pp. 350–355, 1978.  

[16] L. Velho and D. Zorin, “4-8 subdivision,” Computer Aided Geometric 

Design, vol. 18, no. 5, pp. 397–427, 2001. 

[17] J. Xia, I. Garcia, Y. He, S. Xin, and G. Patow, “Editable polycube map 

for gpu-based subdivision surfaces,” Proceedings of the Symposium on 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TAP.2020.3008657

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



 15 

Interactive 3D Graphics and Games, 2011, New York, NY, USA, pp. 

151–158.  

[18] I. Boier-Martin, H. Rushmeier, and J. Jin, “Parameterization of triangle 

meshes over quadrilateral domains,” Proceedings of the Eurographics 

Symposium on Geometry Processing, 2004, Nice, France, pp. 197–208.  

[19] B. Lévy, and Y. Liu, “LP Centroidal Voronoi Tesselation and its 

applications,” ACM Transactions on Graphics, vol. 29, no. 4, pp. 101-

A119, 2010.  

[20] F. Kälberer, M. Nieser, and K. Polthier, “Quadcover - surface 

parameterization using branched coverings,” Computer Graphics 

Forum, vol. 26, no. 3, pp. 375–384, 2007. 

[21] N. Ray, W. C. Li, B. Lévy, A. Sheffer, and P. Alliez, “Periodic global 

parameterization,” ACM Transactions on Graphics, vol. 25, pp. 1460–

1485, Oct. 2006. 

[22] D. Bommes, H. Zimmer, and L. Kobbelt, “Mixed-integer 

quadrangulation,” ACM Transactions on Graphics, vol. 28, pp. 77-78, 

Jul. 2009. 

[23] D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and D. 

Zorin, “Quad-Mesh Generation and Processing: A Survey,” Computer 

Graphics Forum, vol. 32, no. 6, pp. 51-76, 2013. 

[24] G. Xiao and Y. Hou, “Intuitive Formulation of Discontinuous Galerkin 

Surface Integral Equations for Electromagnetic Scattering Problems,” 

IEEE Transactions on Antennas and Propagation, vol. 65, no. 1, pp. 

287-294, Jan 2017. 

[25] S. L. Ho, Y. Zhao, and W. N. Fu, “An Efficient Parameterized Mesh 

Method for Large Shape Variation in Optimal Designs of 

Electromagnetic Devices,” IEEE Transactions on Magnetics, vol. 48, 

no. 11, pp. 4507-4510, Nov 2012. 

[26] B. M. Kolundzija, “Automatic Mesh Generation Using Single- and 

Double-Node Segmentation Techniques,” IEEE Antennas and 

Propagation Magazine, vol. 40, no. 4, pp. 30-38, Aug 1998.  

[27] E. H. Newman and P. Tulyathan, “A Surface Patch Model for Polygonal 

Plates,” IEEE Transactions on Antennas and Propagation, vol. ap-30, 

no. 4, pp. 588-593, Jul 1982. 

[28] T. A. Linkowski and P.M. Slobodzian, “Contour- and Grid-Based 

Algorithm for Mixed Triangular-Rectangular Planar Mesh Generation,” 

Progress in Electromagnetics Research B, vol. 40, pp. 201-220, 2012. 

[29] J. Moreno, M. J. Algar, I Gonzalez Diego, and F. Catedra, “A New 

Mesh Generator Optimized for Electromagnetic Analysis,” Proceedings 

of the 5th European Conference on Antennas and Propagation, pp. 1734-

1738, 2011. 

[30] J. Moreno, M. J. Algar, I. Gonzalez, F. Catedra, “Redesign and 

Optimization of the Paving Algorithm Applied to Electromagnetic 

Tools,” Progress in Electromagnetics Research B, vol. 29, pp. 409-429, 

2011. 

[31] H. Borouchaki and P. Frey, “Adaptive triangular-quadrilateral mesh 

generation,” International Journal For Numerical Methods In 

Engineering, vol. 41 no. 5, pp. 915-934, 1998. 

[32] B. M. Notaros, "Higher Order Frequency-Domain Computational 

Electromagnetics," Special Issue on Large and Multiscale 

Computational Electromagnetics, IEEE Transactions on Antennas and 

Propagation, vol. 56, no. 8, pp. 2251-2276, Aug 2008. 

[33] R. D. Graglia, D. R.Wilton, and A. F. Peterson, “Higher order 

interpolatory vector bases for computational electromagnetics,” IEEE 

Transactions on  Antennas and Propagation, vol. 45, no. 3, pp. 329–

342, Mar. 1997. 

[34] M. Djordjevic and B. M. Notaros, "Double Higher Order Method of 

Moments for Surface Integral Equation Modeling of Metallic and 

Dielectric Antennas and Scatterers," IEEE Transactions on Antennas 

and Propagation, vol. 52, no. 8, pp. 2118-2129, Aug 2004. 

[35] Z.Q. Xie, R. Sevilla, O. Hassan, and K. Morgan, “The generation of 

arbitrary order curved meshes for 3d finite element analysis,” 

Computational Mechanics, vol. 51, no. 3, pp. 361-374, 2013. 

[36] J. C. Young, “Higher-Order Mesh Generation Using Linear Meshes [EM 

Programmer’s Notebook],” IEEE Antennas and Propagation Magazine, 

vol. 61, no. 2, pp. 120-126, Apr 2019. 

[37] J. Harmon, C. Key, and B. M. Notaros, “Geometrically Conformal 

Quadrilateral Surface-Reconstruction for MoM-SIE Simulations,” 

Proceedings of the 2019 International Applied Computational 

Electromagnetics Society (ACES) Symposium – ACES2019, April 15–19, 

2019, Miami, Florida, USA. 

[38] C. Key and B. M. Notaros, “Automatic Generalized Quadrilateral 

Surface Meshing in Computational Electromagnetics by Discrete 

Surface Ricci Flow,” accepted for the 2019 IEEE International 

Symposium on Antennas and Propagation, July 7–12, 2019, Atlanta, 

GA. 

[39] J. Harmon, C. Key, S. B. Manic, and B. M. Notaros, “Construction and 

Application of Geometrically Optimal Curvilinear Surface Elements for 

Double Higher-Order MoM-SIE Modeling,” accepted for the 2019 

USNC-URSI Radio Science Meeting (joint with the IEEE AP-S 

International Symposium), July 7–12, 2019, Atlanta, GA.  

[40] G. Zhang, L. Zeng, and G. Yau, “The unified discrete surface Ricci 

flow,” Graphical Models, vol. 76 no. 5, pp. 321-339, 2014. 

[41] H. D. Cao and X. P. Zhu, “A Complete Proof of the Poincaré and 

Geometrization Conjectures - Application of the Hamilton-Perelman 

Theory of the Ricci Flow,” Asian Journal of Mathematics, vol. 10, no. 2, 

pp. 165-492, June 2006. 

[42] M. Jin, J. Kim, F. Luo, and X. Gu, “Discrete Surface Ricci Flow,“ IEEE 

Transactions on Visualization and Computer Graphics, vol. 14, no. 5, 

Oct 2008.  

[43] X. Gu, F. Luo, J. Sun, and T. Wu, “A Discrete Uniformization Theorem 

for Polyhedral Surfaces,” Journal of Differential Geometry, vol. 109, no. 

2, 2013. 

[44] X. Gu, R. Guo, F. Luo, J. Sun, and T. Wu, “A Discrete Uniformization 

Theorem for Polyhedral Surfaces II,” Journal of Differential Geometry, 

vol. 109, no. 3, 2014. 

[45] R. Garimella, “Conformal Refinement of Unstructured Quadrilateral 

Meshes,” Proceedings of the 18th International Meshing Roundtable, pp. 

30-44, 2009. 

 
Cam Key (S’16) was born in Fort Collins, CO in 

1996. He received his B.S. (2018) and is currently 

pursuing his Ph.D. in Electrical and Computer 

Engineering from Colorado State University. His 

current research interests include uncertainty 

quantification, error prediction, and optimization 

for computational science and engineering; 

computational geometry, meshing, data science, 

machine learning, artificial intelligence, remote 

sensing and GIS, and novel applications of 

numerical methods across disciplines. 

 

Jake Harmon (S’19) was born in Fort Collins, CO 

in 1996. He received his B.S. (summa cum laude) in 

2019 and is currently pursuing his Ph.D. in 

Electrical Engineering from Colorado State 

University. His current research interests include 

adaptive numerical methods, uncertainty 

quantification, computational geometry, and higher 

order modeling in the finite element method and 

surface integral equation method of moments. 

 

 

 

Branislav M. Notaroš (M’00-SM’03-F’16) received 

the Dipl.Ing. (B.S.), M.S., and Ph.D. degrees in 

electrical engineering from the University of 

Belgrade, Belgrade, Yugoslavia, in 1988, 1992, and 

1995, respectively.  

From 1996 to 1999, he was Assistant Professor 

in the School of Electrical Engineering at the 

University of Belgrade. He was Assistant and 

Associate Professor from 1999 to 2006 in the 

Department of Electrical and Computer 

Engineering at the University of Massachusetts 

Dartmouth. He is currently Professor of Electrical 

and Computer Engineering, University Distinguished Teaching Scholar, and 

Director of Electromagnetics Laboratory at Colorado State University.  

Dr. Notaroš serves as General Chair of the 2022 IEEE International 

Symposium on Antennas and Propagation and USNC-URSI National Radio 

Science Meeting and is Associate Editor for the IEEE Transactions on 

Antennas and Propagation. He serves as Vice President of Applied 

Computational Electromagnetics Society (ACES) and as Vice-Chair of 

USNC-URSI Commission B. He was the recipient of the 2005 IEEE MTT-S 

Microwave Prize, 1999 IEE Marconi Premium, 2019 ACES Technical 

Achievement Award, 2015 ASEE ECE Distinguished Educator Award, 2015 

IEEE Undergraduate Teaching Award, and many other research and teaching 

international and national awards.  
 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TAP.2020.3008657

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


