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Abstract—General guidelines and quantitative recipes for
adoptions of optimal higher order parameters for computational
electromagnetics (CEM) modeling using the method of moments
and the finite element method are established and validated, based
on an exhaustive series of numerical experiments and compre-
hensive case studies on higher order hierarchical CEM models
of metallic and dielectric scatterers. The modeling parameters
considered are: electrical dimensions of elements ( -refinement),
polynomial orders of basis functions ( -refinement), orders of
Gauss-Legendre integration formulas (integration accuracy), and
geometrical (curvature) orders of elements in the model. The
goal of the study, which is the first such study of higher order
parameters in CEM, is to reduce the dilemmas and uncertainties
associated with the great modeling flexibility of higher order
elements, basis and testing functions, and integration procedures
(this flexibility is the principal advantage but also the greatest
shortcoming of the higher order CEM), and to ease and facilitate
the decisions to be made on how to actually use them, by both
CEM developers and practitioners.

Index Terms—Curved parametric elements, electromagnetic
analysis, finite element method, higher order modeling, hybrid
methods, integral-equation techniques, method of moments, poly-
nomial basis functions, radar cross section, scattering.

I. INTRODUCTION

R ELATIVELY recently the computational electromag-
netics (CEM) community has started to very extensively

investigate and employ higher order surface and volume ele-
ments for geometrical modeling of electromagnetic structures
and higher order basis functions for the approximation of
currents and/or fields within the elements, mostly in the frame
of the method of moments (MoM), the finite element method
(FEM), and hybrid approaches [1]–[12]. However, the prin-
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cipal advantage of higher order (also known as large-domain
or entire-domain) techniques, their flexibility in terms of the
size and shape of elements and spans of approximation func-
tions, which can greatly reduce the number of unknowns for a
given problem and enhance the accuracy and efficiency of the
CEM analysis, is also their greatest shortcoming—in terms of
dilemmas, uncertainties, and so many open, equally attractive,
options and decisions to be made on how to actually use them.
In other words, the additional flexibility can be also considered
a drawback in a sense that a user has to handle many more
parameters in building an EM model, which requires much
deeper knowledge and understanding of the technique, and a
great deal of modeling experience and expertise, and possibly
considerably increases the overall simulation (modeling plus
computation) time.
In terms of previous research toward the development of gen-

eral guidelines and quantitative recipes for adoptions of higher
order parameters for CEM modeling, a 1970 paper [13] shows
that the current along a thin straight wire dipole that is a wave-
length long can be accurately calculated using MoM with
entire-domain polynomial basis functions of the fourth order
along each of the dipole arms. In [14] and [15], it has been
shown that with polynomial basis functions as few as only three
to four unknowns per suffice for an accurate MoM analysis
of wires. In an entire-domain MoM analysis of a large
metallic plate scatterer [16], polynomial orders of 6 to 9 yield al-
most identical solutions for the surface currents, with an eighth-
order solution being adopted as a benchmark. Polynomial ap-
proximation of the eighth order provides an optimal solution
for the volume current distribution in the MoM analysis of a
long rod-like dielectric scatterer [17]. A large-domain 1-D

FEM numerical study [18] demonstrates that the optimal order
of 1-D polynomial elements is about seven in single precision,
with five unknowns per . Works on a higher order MoM in
the framework of the surface integral equation (SIE) approach,
FEM, and hybrid FEM-MoM techniques [7], [10]–[12] demon-
strate examples using 2-D and 3-D elements that are about
in each dimension.
In addition, an excellent and extremely comprehensive math-

ematical survey of integration formulas, relevant for MoM and
FEM computations, can be found in [19]. In CEM, moreover,
the accuracy and efficiency of numerical integrations are tightly
coupled to singularity cancellation and extraction techniques
[1], [17], [20], [21]. However, as we deal in this study with ele-
ments of various electrical sizes (up to very large ones), we seek
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rules and guidelines that would relate the number of integration
points to the order of basis functions in
each direction in the element. In [17], the formula

in the context of the Gauss-Legendre quadrature
is found to be an optimal choice in a higher order MoM so-
lution to a volume integral equation, and the same formula is
used in [3], where it is also reported that the minimal number
of integration points, needed by the Galerkin method, often ap-
proaches the number of unknowns. In the low-order FEM tech-
nique [22], a constant five-point Gauss-Legendre formula is uti-
lized. In the higher order FEM technique [10], the Gauss-Le-
gendre integration formula in points
is implemented. In [23], Gaussian points, where
is the element order, are employed in each direction for the

semi-analytical integration scheme in an electromagnetic scat-
tering code. Finally, in the higher order MoM technique with
Lagrange-type interpolatory polynomial basis functions [6], a
12-point Gaussian quadrature is used for the third-order basis
functions on curvilinear triangles, as it is found that such a
quadrature yields a well-conditioned matrix.
This paper develops—through very extensive numerical ex-

periments and studies using higher order MoM-SIE and hybrid
FEM-MoM techniques [7], [12]—as precise as possible quanti-
tative recipes for adoptions of optimal (or nearly optimal) higher
order and large-domain parameters for electromagnetic mod-
eling. The parameters considered are: the number of elements
or electrical dimensions of elements (subdivisions) in the model
( -refinement), polynomial orders of basis functions ( -refine-
ment), which are the same as the orders of testing functions
(we use the Galerkin method for testing), orders of Gauss-Le-
gendre integration formulas (numbers of integration points—in-
tegration accuracy), and geometrical orders of elements (orders
of Lagrange-type curvature) in the model. All these parame-
ters can, theoretically, be arbitrary. By optimal parameters we
mean the values of parameters that ideally (for simple prob-
lems) yield an accurate solution employing the least possible
computational resources, or (for complex problems) provide a
firm initial model (starting point) that can be further refined in a
straightforward fashion, and the results can be checked for con-
vergence. This is the first such study of higher order parameters
in CEM (some preliminary results of the study are presented in
[24]). The ultimate goal of this work and the continued future
work in this area is to reduce those dilemmas and uncertainties
associated with the great modeling flexibility of higher order el-
ements and basis and testing functions, and to ease and facilitate
their use, by both CEM developers and practitioners.
Section II of the paper briefly presents the main numer-

ical components of the higher order MoM-SIE and hybrid
FEM-MoM techniques and defines all modeling parameters
that are to be studied. Section III proposes and discusses a
systematic analysis procedure and strategy for determining op-
timal parameters through numerical experiments. In Section IV,
an exhaustive series of simulations and comprehensive case
studies on higher order models of metallic and dielectric scat-
terers is performed, through which a set of general guidelines
and instructions and quantitative recipes for adoptions of
optimal simulation parameters is established and validated.
Section V summarizes the main conclusions of the study, and

Fig. 1. Generalized curved parametric quadrilateral, with the square parent do-
main.

Fig. 2. Generalized curved parametric hexahedron; cubical parent domain is
also shown.

puts them in a broader perspective of current and future CEM
research and practice.

II. MODELING PARAMETERS IN HIGHER ORDER MOM-SIE
AND HYBRID FEM-MOM TECHNIQUES

In MoM-SIE and FEM-MoM techniques, metallic and di-
electric surfaces of an electromagnetic structure (antenna or
scatterer) under consideration are modeled using Lagrange-type
generalized curved parametric quadrilaterals of arbitrary ge-
ometrical orders and [7], shown in
Fig. 1. Electric and magnetic surface current density vectors,
and , over every generalized quadrilateral in the model

are approximated by means of divergence-conforming hier-
archical-type polynomial vector basis functions in parametric
coordinates and , with arbitrary current-expansion orders

and [7], which are entirely independent
from the element geometrical orders ( and ).
The building block for volumetric FEM modeling is a La-

grange-type interpolation generalized hexahedron, in Fig. 2,
with geometrical orders , , and
[10]–[12]. The electric field vector, , inside FEM hexahedra
is approximated by curl-conforming hierarchical polynomial
vector expansions of orders , , and
[10].
In both MoM-SIE and FEM-MoM techniques, the equa-

tions are tested by means of the Galerkin method, i.e., using
the same functions used for current expansion. The resulting
generalized Galerkin impedances (the system matrix elements)
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corresponding to testing functions defined on the th quadri-
lateral patch and basis functions defined on the th patch in
the model (or to different testing and basis function sets on the
same patch), for one of the homogeneous material domains
in the structure, can be found as linear combinations of basic
Galerkin potential and scalar field integrals and given
in [7]. When the source-to-field distance in
Green’s function is zero or small, the procedure of ex-
tracting the (quasi)singularity in integrals is performed [17]. A
typical FEM-FEM Galerkin matrix entry contains a volumetric
(three-fold) integral over a generalized hexahedron (Fig. 2) in
the model [10]. The numerical integration is carried out using
the Gauss-Legendre integration formula. For example, the
four-fold integration formula for the quadruple integrals has
the form

(1)

where , , , and are the
adopted orders, , , , and are arguments
(zeros of the Legendre polynomials), and , , , and
are weights of the corresponding Gauss-Legendre integration
formulas. Of course, since the integrand contains Green’s
function, it is not a polynomial (in parametric coordinates), and
the well-known accuracy characterizations of the quadrature
formula—if applied to integrals of polynomials—do not apply
here [the integrand of FEM integrals is not a polynomial in ,
, and either].

III. PROCEDURE FOR DETERMINING OPTIMAL HIGHER
ORDER MODELING PARAMETERS THROUGH NUMERICAL

EXPERIMENTS

We investigate the behavior of higher order MoM-SIE and
FEM-MoM numerical solutions by running an exhaustive se-
ries of electromagnetic simulations of several canonical models
of metallic and dielectric scatterers, in which we systematically
vary the key higher order modeling parameters: number of
elements in the model, ( -refinement), or, equivalently,
numbers of subdivisions per edge, , , and , of ini-
tially used elements, polynomial orders of basis (and testing)
functions, , , and ( -refinement), orders of Gauss-Le-
gendre integration formulas, i.e., numbers of integration points,

, , and in (1) to solve MoM and FEM
integrals (integration accuracy), and geometrical orders of ele-
ments, namely, orders of Lagrange-type curvature in the model,
, , and (when curved elements are employed).
However, the combinatorial space of the adopted key parame-

ters is enormously vast and technically ungraspable, particularly
when one takes into account that all of the parameters can gener-
ally be changed anisotropically along the element (quadrilateral
or hexahedron) edges. Hence, in the study, we limit this space
by using only elements with isotropic polynomial orders,

for MoM quadrilaterals and
for FEM hexahedra, and similarly

for quadrilaterals and for
hexahedra, as well as and
, respectively. In addition, meshes in all examples are refined

isotropically in all directions: the initial, roughest, geometrical
mesh is equally subdivided along all edges in the -refinement
process . Finally, the same set of
parameters is adopted (and then equally varied) in all elements
in a model. These restrictions impose the utilization of simple
symmetric structures to be analyzed as EMmodels for the given
purpose. Hence, the structures to be modeled and simulated are
chosen to be metallic and homogeneous dielectric cubical and
spherical scatterers, respectively. Nonetheless, the number of
simulations (and obtained results) with systematically varying
(i) the number of edge divisions from to , (ii)
polynomial orders of basis (and testing) functions from
to , and (iii) orders of Gauss-Legendre formulas from

to , as well as (iv) using the curvature
orders (for spheres) of and , respectively, is still
extremely large and entirely sufficient for drawing the desired
conclusions.
In higher order computational models, we define the model

mesh complexity by referring to the number of quadrilateral
patches on the structure side, . For instance, a cube
or a sphere modeled by only one patch per side is defined by

, which results in a total of patches
(and FEM element in the FEM-MoM model).
The refined mesh determined by is the one with
initial side patches divided into 2 2 quadrilaterals, yielding
a total of patches (the corresponding number
of FEM elements in such a mesh would be ).
Similarly, an model has patches. Addi-
tionally, cube side length and sphere radius for the considered
scatterers are both set to and the relative dielectric per-
mittivity of dielectric scatterers is adopted to be in all
examples and experiments. When referring to the electrical size
of the model, we consider for metallic and for dielec-
tric scatterers, where and are the wavelengths in free space
and in the dielectric of the object, respectively. Finally, we adopt
only single machine precision for all computations, having in
mind, however, that this is one of the key limiting factors for
both accuracy and convergence with -, -, and integral accu-
racy refinements, and that quantitative recipes for adoptions of
optimal higher order modeling parameters would be different in
double (or higher) precision.
Cubical scatterers (metallic and dielectric) are excellent

benchmarking choices because their geometry can be modeled
exactly, thus eliminating the geometrical error from the numer-
ical solution. They are attractive for evaluation of numerical
methods also because of their sharp edges and corners, in
the vicinity of which the fields and currents exhibit singular,
and challenging to model and capture, behavior. Although
analytical solutions do not exist for these models, experimental
results and highly accurate numerical solutions, obtained by
one of the industry’s leading commercial software tools for
full wave EM analysis—WIPL-D, are used for validations and
comparisons. In that, to avoid trade-offs between accuracy and
run-time, standard for commercial codes, all WIPL-D reference
models are constructed using the fully manual expert mode, in
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which meshes are built manually, point-by-point (all elements
in models are manually defined, with no automatic meshing
or subdivision allowed), all element current expansions and
integration accuracies are manually chosen, and solutions
are fully -refined and carefully checked for convergence
in a considered frequency range. Spherical scatterers, on the
other hand, are excellent evaluation and benchmarking models
because the analytical solutions for them exist in the form of
Mie’s series, allowing exact validation of numerical solutions
and rigorous judging of the numerical accuracy. Additionally,
they are objects with pronounced curvature, which is always a
challenge for modeling from the geometrical point of view (in
fact, spheres are customarily taken as examples of difficulties
with modeling of curvature by many researchers). Spherical
scatterers are therefore convenient for analysis of higher order
solutions involving curved large-domain Lagrange-type quadri-
laterals and hexahedra.
The direct solution to EM (scattering) problems analyzed

by the MoM-SIE technique is the (equivalent) surface current
distribution on the scatterer surface(s). The quality of the
solution can thus be most naturally (from the mathematical
point of view) judged by examining an error associated with
the current distribution (e.g., in an average or an RMS sense).
However, in this paper, we take a more practical approach and
adopt the radar cross-section (RCS), which is most frequently
the quantity of interest that is measured and simulated in real
EM scattering applications, to be the quantity of choice for our
assessment of the solution accuracy. We also construct a simple
metric, the absolute RCS error in dB, for error evaluation. We
evaluate the absolute RCS error in FEM-MoM computations
as well.
To cope with the still abundantly large number of possible

parameter variations and experimentation scenarios, we adopt
the following systematic analysis procedure and strategy. In all
examples, we start with the simplest model and
analyze (a) the absolute monostatic RCS error, computed as

in dB, for a fixed high
vs. the model electrical size and (b) the average

absolute RCS error, averaged over multiple electrical sizes of
elements in a reasonable frequency range, where the elements
are electrically small enough to yield accurate solutions, vs.

. Both analyses are carried out for a series of polynomial
orders , and respective families of curves are generated.
In analysis of the error vs. the model size [analysis (a)],
we seek, for every , the (or ) limit for which
the model yields a solution with an error not significantly
higher than 0.1 dB (in graphs, we truncate the error curves
when the error becomes much higher than 1 dB—for the
clarity of the graph) and note how this limit increases with
increasing ( -refinement). In analysis of the average error
vs. [analysis (b)], we seek the optimal , for which the
average error is small enough (below 0.1 dB) and does not
improve much with further -refinement, and the corresponding

. We consider the accuracy of RCS simulation results
with an error lower than 0.1 dB to be excellent in terms
of practical relevance, since the minimum uncertainty (error)
in RCS measurements and calibrations is almost never at or
below the 0.2 dB level [25]–[27], and the errors lower than 0.1

dB are practically undetectable. In other words, based on the
obtained results, we draw conclusions about the convergence
of the results with increasing ( -refinement), maximum
electrical size of the elements, (in terms of or ), that
can be analyzed using sufficiently high (beyond which
-refinement should be performed), the highest that can
be reasonably used, and the optimal and . We then
-refine the model mesh and repeat the procedure. For spheres,
we go through the same steps using curved Lagrange-type
elements with fixed and , respectively. Finally,
we perform higher order RCS analysis of the NASA almond
[28], which is an EMCC (Electromagnetic Code Consortium)
benchmark target and one of the most popular benchmarking
examples for both research and commercial CEM codes, as
well as higher order MoM-SIE input-impedance computation
for a wire-plate antenna.

IV. NUMERICAL RESULTS AND DISCUSSION: OPTIMAL
MODELING PARAMETERS AND PARAMETER LIMITS

A. Optimal Higher Order Modeling Parameters for MoM-SIE
Scattering Analysis of a Metallic Cube

We first present the higher order MoM-SIE scattering anal-
ysis of a metallic (PEC) cube (with ), starting with the
simplest model of the scatterer. Based on the re-
sults in Fig. 3(a), we conclude that the model is accurately sim-
ulated up to a limit of (element edge size amounts to

) using or (depending on the desired accuracy
level) up to with , and that even a model as
large as in electrical size of the element edge may
be considered to be usable (for some engineering applications)
if is employed. From Fig. 3(b), where, for the average
error, we take into account the conservative maximum element
size (before -refinement) of , we realize (looking at the
“knee” points of the curves) that is optimal for
all orders ( , 6, 7, and 8) providing very accurate results
(error smaller than 0.1 dB). Orders are not recommended
as they do not yield better results—they neither significantly in-
crease the analyzable model size nor improve the average accu-
racy of the solution in the reasonable frequency range. Based on
all of the above, we select the overall optimal choice of param-
eters to be and (for ), and compute
and plot the normalized RCS in Fig. 3(c), where we
also plot the results for and for the less
conservative maximum element size , as well as the
measured RCS [29]. If elements smaller than optimal have to
be used, which may be mandated by the geometrical or mate-
rial complexity of the structure under consideration, the optimal
polynomial orders are reduced by one for every reduction of
the element size by ; for instance, based (preliminary) on
Fig. 3(a), is optimal for , while
is the best choice if (this will be explored more
in studies with -refinements).
We then -refine the cube model mesh to and

repeat the procedure. From the results in Fig. 4(a), we see that
the model is accurately analyzed up to
using , and even to with .
Based on Fig. 4(b), we conclude that—for , 6, 7, and
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Fig. 3. Higher order MoM-SIE scattering analysis of a metallic cube with : (a) absolute RCS error for and a series of orders
( -refinement) vs. the model electrical size, (b) absolute RCS error averaged over multiple values of in a frequency range corresponding to reasonable model
sizes, (conservative maximum model size), with a series of values vs. , and (c) the optimal solution ( and for ),
along with the results for and (for ) and measured data [29].

Fig. 4. MoM-SIE analysis of a metallic cube with : (a) RCS error for and -refinement, (b) average RCS error for reasonable model
sizes, , with -refinement vs. , and (c) the optimal solution for both and .

8— is optimal (“knees” of curves), as well as that
the optimal polynomial order is again (with ),
while orders and higher are not recommended. The
normalized RCS for the more conservative ( , )
and less conservative ( , ) optimal solutions is
shown in Fig. 4(c).
Finally, for , the results in Fig. 5(a) tell us that the

model is accurate up to for , and
even higher (for ). From Fig. 5(b), is
optimal, for , 6, and 7, and the optimal , for ,
comes out to be (with ). Fig. 5(c) shows the
optimal solution for both and . Note that the
solution with and requires 3888 unknowns
and takes 16.27 s of computation time at a single frequency
using a PC with Intel Core 2 Quad CPU Q6600 at 2.4 GHz,
8.00 GB of RAM, and 64-bit Microsoft Windows 7. In addition,
Fig. 6(a) tells us that if elements up to in size are
used, orders or 3 provide accurate results, or 4
suffices, based on Fig. 6(b), for , and or 5 should
be used if the maximum element size in the model is ,
Fig. 6(c), where, in all cases, (“knee” points of
the curves) is the optimal choice.
General conclusions for the higher orderMoM-SIE scattering

analysis of a metallic cube are that the optimal (or nearly op-
timal) choice of polynomial orders of basis and testing functions

and orders of Gauss-Legendre integration formulas is given by
and , respectively. The mesh should be -re-

fined if the element edge size becomes greater than
(conservative option). If elements smaller than optimal are to be
used, the optimal polynomial orders are for ,

for , for ,
for , and for .

Hence, the minimum average total number of unknowns (the
number of current expansion coefficients for the whole model)
per wavelength for accurate RCS analysis amounts approxi-
mately to 11.3 if is used, to 8.5 if , to 5.7 for

, to 4.7 for , and to 4.2 if is implemented
in the model. Orders are not recommended to be used
( -refinement should be performed instead). It is generally op-
timal to use for any . It is generally not recom-
mended to increase any further, except in order to verify
the solution stability.

B. Optimal Higher Order Modeling Parameters for MoM-SIE
Scattering Analysis of a Dielectric Cube

Next, we carry out the numerical investigation of higher order
modeling parameters in the MoM-SIE analysis of a dielectric
cube scatterer (with and ). For the simplest
model , results in Fig. 7(a) indicate that the compu-
tation is accurate up to (element edge size is )
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Fig. 5. MoM-SIE simulations of a metallic cube with : (a) RCS error vs. , (b) RCS error averaged over reasonable model sizes
up to or (conservative choice), and (c) the optimal solution (for both and ).

Fig. 6. Average RCS error in the MoM-SIE analysis of a metallic cube with for (a) , (b) , and (c) .

Fig. 7. Higher order MoM-SIE computation of a dielectric cube scatterer with : (a) absolute RCS error for and -refinement vs. the
model electrical size, (b) absolute RCS error averaged over multiple reasonable model sizes, , with -refinement vs. , and (c) the optimal solution
(the results are shown also beyond the reasonable range, i.e., up to ).

using or 6, while adoption of a larger can extend
the analyzable size even further. According to Fig. 7(b), we re-
alize that the polynomial orders or 6 are optimal, for

(see the “knee” points of the curves), while or-
ders and higher are not recommended. The normalized
RCS of the cube using the optimal set of parameters and

is shown in Fig. 7(c).
For the mesh with , the results in Fig. 8(a) are

accurate up to ( , again) for . Using
increases this range up to . From Fig. 8(b),

we conclude that is consistently optimal, as
well as that the optimal polynomial order is again , while

orders and higher are not recommended. The optimal
solution is presented in Fig. 8(c). We also see, in Fig. 8(a), that

or 3 is optimal for ), is the
best choice for , and should be adopted
for .
Results in Fig. 9 for the model of the dielectric cube scatterer

with yield identical conclusions as those in Fig. 8.
Here, the number of unknowns and computation time for the
solution with and are 7776 and 144 s, respec-
tively.
Overall, the conclusions are practically the same as in the

analysis of metallic scatterers, that and
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Fig. 8. MoM-SIE simulations of a dielectric cube with : (a) RCS error vs. the model electrical size , (b) average RCS error for reasonable
model sizes, , vs. , and (c) the optimal solution (shown within the reasonable range and above it, up to ).

Fig. 9. MoM-SIE analysis of a dielectric cube with : (a) RCS error , (b) average RCS error for reasonable model sizes up to ,
and (c) the optimal solution (shown across and beyond the reasonable range).

Fig. 10. Higher order MoM-SIE analysis of a dielectric spherical scatterer with : (a) average RCS error for and -refinement (unsuccessful)
vs. , (b) RCS error for , , and two lower values of vs. the model electrical size, and (c) RCS error for averaged for
multiple reasonable model sizes, , vs. .

constitute the optimal (or very close to optimal) choice for
MoM-SIE expansion polynomial orders and numbers of
Gauss-Legendre integration points, respectively, that the mesh
should be refined for elements larger than in edge
length, which corresponds to the conservative maximum ele-
ment edge length selection for metallic scatterers of ,
that the optimal orders are reduced by one for every re-
duction of the element size by if elements smaller than
optimal have to be used, and that setting
is generally optimal for any . In addition, note that for the
generally optimal choice of , the computation time for
the analysis of an dielectric cube in 100 frequency

points is 31% longer if is used instead of
the generally optimal , and if a “brute-force”
adoption of is employed, the simulation time is
742% longer.

C. Optimal Higher Order Modeling Parameters for MoM-SIE
Scattering Analysis of a Dielectric Sphere

The next example is a dielectric spherical scatterer (with
and ) analyzed using the higher order MoM-SIE

technique, and the first geometrical model is characterized by
and . From the results in Fig. 10(a), we realize
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Fig. 11. MoM-SIE scattering computation of a dielectric sphere with and : (a) RCS error vs. the model electrical size , (b)
average RCS error for reasonable model sizes up to vs. , and (c) the optimal solution (shown within and above the reasonable range).

Fig. 12. Higher order FEM-MoM scattering analysis of a dielectric cube with : (a) RCS error averaged for multiple reasonable model sizes, up to
, for different polynomial orders and , (b) absolute RCS error for a series of values for vs. the electrical

size of the scatterer ( and ), and (c) average RCS error for reasonable model sizes, , with -refinement vs.
).

that the solution accuracy is limited by the accuracy of the geo-
metrical model, and that it cannot be improved by -refinement.
For an -refined model with and , we observe,
in Fig. 10(b), that the model enables accurate simulations up to

or ( is the diameter of the sphere), with the
elements being about across, for , and up to

or for , while, based
on Fig. 10(c), is an optimal choice. High-order
basis functions cannot be efficiently used due to the
geometrical inaccuracy of the model.
We then increase the element geometrical orders in the

model of the sphere to and repeat the procedure.
Results in Fig. 11(a) indicate that the model can now be accu-
rately simulated up to at least or
with . According to Fig. 11(b), the average RCS error is
very small (0.068 dB) for and , and does not
improve much with further -refinement, due to small geomet-
rical inaccuracy (e.g., setting and yields a
0.057 dB error), while generally optimal orders of Gauss-Le-
gendre integration formulas are (observing the “knees” of the
respective curves) (for any ). It turns out that
we can now take advantage of high-order basis functions due
to significantly higher geometrical accuracy of the model than
with . However, orders are not recommended,
since they do not yield better average errors. The optimal solu-
tion, for , is given in Fig. 11(c). Note that all conclusions
are essentially the same as for the dielectric cube. Note also that

the same conclusions are obtained for a metallic (PEC) spher-
ical scatterer as well.

D. Optimal Higher Order Modeling Parameters for
FEM-MoM Scattering Analysis of a Dielectric Cube

We next conduct a numerical study of higher order mod-
eling parameters in the hybrid FEM-MoM scattering analysis
of a dielectric cube ( and ), adopting the
simplest model possible, with (one FEM and
six MoM elements). We sweep polynomial orders for FEM
field expansions from to 11 and for MoM current
expansions from to 13, keeping a conservative
choice of orders of Gauss-Legendre integration formulas given
by (higher than optimal according to
the MoM-SIE studies) and adopting the same choice for the
FEM part, . Fig. 12(a) shows that the
minimal order sums (thick gray curve) for
any given error are achieved when parameter
equals 1 or 2. However, we realize that is the accuracy
limiting factor (light yellow areas), and hence the choice that
gives the minimal order sum is (green
curve). Note that the light yellow ribbons (constant )
are depicted for the first five curves only (excluding the blue
and magenta curves). These ribbons would be shifted higher
(larger error) for the curve and even
higher for the curve. So, the conclu-
sion is that the optimal order separation between and



2798 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, NO. 6, JUNE 2012

Fig. 13. Higher order MoM-SIE scattering analysis of the NASA metallic al-
mond at [28]: (a) geometrical model with curved

quadrilateral elements and (b) comparison of the simulation results
for the RCS of the almond as a function of the azimuthal angle (the elevation
angle is zero) for the horizontal (HH) and vertical (VV) polarizations, respec-
tively, with the numerical results obtained by WIPL-D and FEKO [30], as well
as with the results of measurements [28].

is unity. This can be attributed to the fact that dominant
FEM-MoM inner products are normally those between FEM
and MoM basis functions in the same direction, whose max-
imal orders are offset by one in the mixed-order arrangement
for curl-conforming FEM functions with respect to that for
divergence-conforming MoM functions [12].
Finally, to determine the optimal and in the

FEM-MoM analysis, we simulate the same dielectric scatterer
employing the optimal and systemat-
ically varying from 5 to 10, and plot the graphs in
Figs. 12(b) and (c). To reduce the number of combinations and
computations, we also adopt .
Based on Fig. 12(b), we conclude that the cube can be very
accurately analyzed up to using
and . From Fig. 12(c), on the other side, we obtain
that the generally optimal (“knees” of the curves)
is for any (but higher s
can be used as well), and that the overall optimal orders come
out to be , , , and

. This conclusion is consistent with conclusions
drawn for the same scatterer analyzed by the MoM-SIE tech-
nique, where and is the optimal choice
as well.

E. Higher Order MoM-SIE RCS Analysis of the NASA Almond

As the last scattering example, we analyze a scatterer
where, due to the geometrical complexity and constraints of
the structure, electrically relatively small elements have to

be used—namely, we perform higher order MoM-SIE RCS
analysis of the NASA almond, a benchmark target established
by the Electromagnetic Code Consortium (EMCC), at a fre-
quency of [28]. Fig. 13(a) shows a model of the
almond built (based on geometrical equations from [28]) using

quadrilateral curved elements with , ,
and (all elements are in the range),
resulting in a total of only 448 unknowns (with no use of
symmetry). The higher order simulation results for the RCS of
the almond are compared in Fig. 13(b) with the results obtained
by WIPL-D and FEKO [30], respectively, as well as with
measurements [28]. We observe an excellent mutual agreement
of the three sets of numerical results and their good agreement
with the measurements—for the parameters in the higher order
model selected exactly according to the established recipes for
adoption of higher order modeling parameters for elements
smaller than optimal.

F. Higher Order MoM-SIE Impedance Computation for a
Wire-Plate Antenna

As the final example, we perform higher order MoM-SIE
analysis of a thin wire monopole antenna mounted on a square
PEC plate, as shown in Fig. 14(a), in order to verify that the
general guidelines and recipes for adoptions of optimal higher
order simulation parameters obtained in RCS calculations also
apply when a more sensitive error measure, that of the antenna
input impedance, is observed. The plate edge length is

, the monopole length is , and its ra-
dius is . The monopole is excited at its base by
a point (delta-function) voltage generator. The analysis of the
structure is performed using the simplest possible model of the
plate, composed of four trapezoidal (triangle-like) quadrilateral
patches, as depicted in Fig. 14(a), with isotropic

polynomial orders of basis functions on all patches. The
polynomial order of the axial line current along the wire is fixed
at (to reduce the number of possible parameter vari-
ations in the model). The reference results used for compar-
isons and error evaluations are obtained simulating an -refined
WIPL-D model shown in Fig. 14(b), with fully converged solu-
tions for the entire frequency range considered.
Carefully examining error plots in Figs. 14(c) and (d), one

can draw essentially the same overall conclusions about higher
order parameters of the antenna-impedance analysis as in scat-
tering examples. For instance, based on the results in Fig. 14(c),
we conclude that the model in Fig. 14(a) is accurately simulated,
with impedance relative errors lower than about 2.5% (which is
consistent with the RCS error of 0.1 dB in scattering compu-
tations), up to a limit of using and up to

with , whereas a 1% accuracy can easily
be achieved by somewhat reducing the patch sizes. Note that if

, element edge sizes for each of the patches amount to
, , and , the height

of the trapezoid is , and the patch midlines in and
directions are both about long. In addition, from Fig. 14(d),
we see that a choice of and , with which
the impedance relative error averaged over the entire frequency
range in Fig. 14(c), so up to , amounts to 1%, is again
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Fig. 14. Higher orderMoM-SIE impedance computation for a wire monopole antenna attached to a square plate: (a) model with four trapezoidal (triangle-like)
quadrilateral patches, (b) reference WIPL-D model, (c) relative impedance error, , for and a series of
orders ( -refinement), along with the optimal ( and ) solution for , , and , vs. the model electrical size, and (d)
relative impedance error averaged over multiple values of in the entire frequency range in (c), , with -refinement vs. .

optimal (as in RCS calculations); the antenna impedance results
plotted in Fig. 14(c) are obtained with this choice of parameters.

V. CONCLUSIONS

This paper has investigated and evaluated the behavior of
higher order hierarchical MoM-SIE and FEM-MoM numerical
solutions to electromagnetic scattering problems by running an
exhaustive series of simulations and systematically varying and
studying the key higher order modeling parameters and their in-
fluence on the solutions. Based on numerical experiments and
comprehensive case studies on symmetric canonical models that
allow using elements with isotropic higher order parameters and
uniform meshes (to limit the combinatorial space of the param-
eters in investigations), the paper has established and validated
general guidelines and instructions, and as precise as possible
quantitative recipes, for adoptions of optimal higher order and
large-domain parameters for electromagnetic modeling, within
the class of CEM approaches and techniques considered. The
modeling parameters considered (note that all these parameters
can, theoretically, be arbitrary) are: electrical dimensions of el-
ements (subdivisions) in the model, ( -refinement), poly-
nomial orders of basis and testing functions ( -refinement), ,
orders of Gauss-Legendre integration formulas (numbers of in-
tegration points—integration accuracy), , and geometrical
orders of elements (orders of Lagrange-type curvature) in the
model, . In addition, higher order MoM-SIE RCS analysis of
an EMCC benchmark target (NASA almond) and impedance
computation for a wire-plate antenna have been performed.
Overall, the main conclusions of the study, which is the first

such study of higher order parameters in CEM, can be summa-
rized as follows. The MoM-SIE or FEM-MoM model should
be -refined if the dimensions of (flat or curved) elements be-
come greater than , with standing for the wavelength
in free space in the case of metallic structures and for the
wavelength in the dielectric for dielectric ones. The optimal
(or nearly optimal) choice of orders and is given by

and , respectively, for both metallic and
dielectric structures, with or without pronounced curvature. If
elements smaller than optimal have to be used, due to the ge-
ometrical or material complexity of the structure, the optimal
polynomial orders should be adopted as follows: for el-

ement sizes , for ,
for , for ,
for , and for . The min-
imum average total number of unknowns per wavelength for ac-
curate RCS analysis amounts to about 14.1, 11.3, 8.5, 5.7, 4.7,
and 4.2 if , 2, 3, 4, 5, and 6, respectively, is used in a
higher order model of a PEC structure, while these numbers are
doubled for dielectric scatterers. In hybrid FEM-MoM models,

is optimal. Polynomial orders higher than
are not recommended to be used. It is generally optimal

to use for any . It is generally not recom-
mended to increase any further. For curved structures,

– is always a better choice than ; for surfaces
with pronounced curvature, should be adopted in order
to enable efficient use of high orders on electrically large el-
ements, while geometrical orders higher than that are not rec-
ommended.
Established guidelines and recipes for adoptions of optimal

higher order parameters in MoM and FEM simulations are quite
general and applicable to a variety of electromagnetic structures
and situations, but, when using them, one should have in mind
the following limitations and restrictions. All conclusions are
for computations in single machine precision. One of the tasks
for future work along the lines of this research is to perform a
study of higher order parameters for simulations in double pre-
cision, and to compare the findings for single and double pre-
cision computations. The recipes do not take into account pos-
sible high nonuniformities of fields, high geometrical and mate-
rial inhomogeneities of parts of analyzed structures, and prox-
imity effects, where additional - and/or -refinements may be
needed to obtain accurate results (e.g., edging and imaging [31],
and related procedures). The study is based primarily on far-
field (RCS) evaluations of electromagnetic scatterers, with only
one example of antenna input impedance calculations, which is
at least indicative of the general guidelines for simulation pa-
rameters obtained in RCS simulations being applicable to cur-
rent-distribution, antenna-impedance, and near-field computa-
tions as well. However, a detailed parametric study to confirm or
amend these claims for near-field quantities, including the cur-
rent distribution, antenna impedance, and internal field in mate-
rials, is in order for future work.
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The developed set of rules should be of significant interest
and value for MoM and FEM practitioners and application en-
gineers using similar (or even not so similar) CEM software, and
may result in considerable reductions of the overall simulation
(modeling plus computation) time. For instance, computations
involving unreasonably high or low polynomial orders of basis
and testing functions and/or orders of Gauss-Legendre integra-
tion formulas, and unreasonable, too large or too small, elec-
trical dimensions of elements in the model, as well as various
unreasonable combinations of different choices, could result in
meaningless models and simulations (that often cannot be re-
fined) and/or in an unnecessarily extensive utilization of compu-
tational resources (e.g., orders of magnitude longer computation
times). It should also be valuable to CEM research community
in developing new higher order MoM and FEM computational
methods and techniques, and to CEM software designers (e.g.,
in designing and building automatic or semi-automatic higher
order meshes and models with optimally preset parameters).
The ultimate goal of this present work and the continued fu-

ture work in this area is to reduce the dilemmas and uncertain-
ties associated with the great modeling flexibility in higher order
CEM techniques in terms of the size and shape of elements and
spans of approximation and testing functions, and to ease and
facilitate the decisions to be made on how to actually use them,
by both CEM developers and practitioners. The goal is for the
class of approaches and techniques considered here and for the
higher order CEM modeling methodology in general to be an
easily and confidently used analysis and design tool, with a min-
imum of expert interaction required to produce valuable results
in practical applications. We believe that this and similar fu-
ture studies, including those on associated efficient higher order
meshing techniques and algorithms (which are not discussed in
this paper), are the best, if not the only, way to close the large gap
between the rising academic interest in the higher order CEM,
which evidently shows great numerical potential, and its actual
usefulness and use in electromagnetics research and engineering
applications.
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