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 

Abstract—This study investigates and evaluates applications of 

the adjoint problem and its solution in frequency-domain 

computational electromagnetics (CEM). The study establishes 

and validates adjoint-based applications including higher-order 

parameter sampling, a posteriori error estimate evaluation, and 

p- and h-refinements. These applications can improve efficiency, 

automation, and robustness of CEM methods. We employ a one-

dimensional finite-element-method scattering solver, simplifying 

implementation, replicability, clarity, and intuitiveness of 

analysis results and conclusions, which then extend naturally to 

higher-dimensional solvers and more-complicated CEM 

problems. While demonstrated with a higher-order solver, the 

derived techniques apply to low-order methodology as well. This 

is the first demonstration of applicability of adjoint-based a 

posteriori error estimation techniques to adaptive discretization 

refinement in frequency-domain CEM with arbitrary-order basis 

functions. This work introduces application of dual-weighted 

residual error estimation and selective adaptivity based on error 

cancellation. The proposed targeted, adaptive mesh/model p- 

and/or h-refinement heuristics informed by adjoint element-wise 

error contribution estimates show near-monotonic reduction of 

quantity-of-interest error with increased number of refined 

elements. In general, adjoint techniques are under-utilized in 

CEM, and another goal of this work is to promote their future 

use for refinement, optimization, and uncertainty quantification. 
 

Index Terms—computational electromagnetics; finite element 

method; higher-order techniques, uncertainty quantification; 

adjoint methods; p-refinement; h-refinement; a posteriori error 

estimation; element-wise error contribution estimates; adaptive 

mesh refinement; higher-order parameter sampling; 

optimization.  
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I. INTRODUCTION 

N the majority of computational electromagnetics (CEM) 

methods, numerical discretization relies on low-order 

techniques, for which the structure of interest is modeled by 

volume or surface elements that are electrically small, and the 

fields or currents within the elements are approximated by 

low-order basis functions, often resulting in large linear 

system size and high computational overhead. Alternatively, 

higher-order techniques can greatly reduce the number of 

unknowns for a given problem and enhance the accuracy and 

efficiency of the CEM analysis, utilizing higher-order basis 

functions, e.g., sets of linearly-independent polynomials, 

defined over relatively large geometrical elements [1]. This 

allows for much greater flexibility in adjusting the resolution 

of the discretization, including h-refinement where the 

element size is adjusted, p-refinement where the basis function 

order is adjusted, and hp-refinement which combines both 

approaches. However, the practical application of that 

flexibility still presents a significant challenge. Choosing 

which subset of elements to p- or h-refine to most-optimally 

improve solution accuracy remains an open challenge with 

both the higher-order methodology and low-order techniques.  

Previous literature on higher-order CEM techniques has 

focused mainly on solver efficiency, computation times, and 

convergence properties with respect to p- or h-refinement in 

the contexts of both finite element method (FEM) and method 

of moments (MoM) based numerical discretization 

procedures, while offering some general heuristics for 

discretization (mesh or model) building and discretization 

refinement [1]-[13]. However, increasing demands of 

uncertainty quantification for complicated engineering 

simulations [14] necessitate accurate error estimation of 

computed results, preferably using approaches that quantify 

the contributions to error from various discretization choices 

involved in the simulation. 

 A practical issue with FEM and MoM CEM techniques in 

general is the relative inefficiency of gradient-based 

optimization. Many of the most effective optimization 

techniques rely on gradient information––in the CEM case, 

sensitivity of some property of the solution, the Quantity of 

Interest (QoI), e.g., radar cross-section (RCS), input 
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impedance, etc., to some parameter of the electromagnetic 

structure in question (scatterer shape, material permittivity, 

etc.). This sensitivity information is expressed as a partial 

derivative of the QoI with respect to the input parameter, 

which is obtained in the classical approach by introducing a 

small perturbation to the input parameter and recording the 

corresponding change in the output quantity. This technique 

requires a minimum of two complete solves––one with the 

nominal value and the other with the perturbed value of the 

parameter and is subject to issues of subtractive cancellation 

that necessitate accurate solves for the differences. To 

compound this, CEM optimization problems are often 

multidimensional, with several parameters forming a basis for 

the search space. So, the full gradient of the QoI over an n-

dimensional parameter space requires n+1 full solves. For 

practical CEM problems, the computation time of which can 

often be measured in hours and sometimes days, this classical 

approach can be untenable.  

 As an optimization algorithm explores the search space, the 

parameters of the CEM problem being solved may vary 

substantially, a challenge associated with optimization applied 

to higher-order and low-order FEM and MoM techniques that 

has broader implications for both traditional (including 

gradient information) and gradient-free optimization 

techniques, like genetic algorithms and particle swarm 

optimization. For optimization problems with large search 

spaces, a sufficiently-refined mesh for all possible parameter 

combinations within the search bounds is often extremely fine, 

slowing the simulation time for each evaluation of the 

objective function. Rather than attempting to preconstruct a 

one-size-fits-all mesh, it is often advantageous to begin with a 

coarse discretization and refine progressively as parameter 

changes necessitate. This, however, potentially introduces a 

remeshing step between successive evaluations of the 

objective function (FEM or MoM solves). Each remeshing can 

add significant computational overhead to the optimization 

algorithm and raises issues regarding which elements to refine 

for maximum benefit and how to refine them.  

We often need to improve the accuracy of an existing CEM 

solution to a given problem by p-, h-, or hp-refining the model 

adaptively. In adaptive CEM schemes, the solution is 

automatically refined step by step, according to an error 

indicator which can be derived from a posteriori error 

estimates, computed from the existing numerical solution at 

each step. Ideally, the adaption to reduce the global error in 

the QoI would be selective and targeted; an element would be 

selected for refinement based on its a posteriori error 

contribution estimate, with selected elements subject to a 

change in field or current approximation order, split into 

smaller elements, or both. It is therefore highly desirable to 

produce an automated, adaptive, targeted refinement algorithm 

that can not only quickly refine the discretization, but can do 

so near-optimally, choosing the best K elements in the mesh to 

p- or h-refine for the largest increase in solution accuracy for a 

given QoI and a given K.  

Adjoint methods, employing a generalization of the notion 

of a Green’s function, and a posteriori error estimation 

techniques have been widely studied in the field of applied 

mathematics. Influential references include application to 

ordinary differential equations [15] and in-depth studies 

concerning specific and general partial differential equations 

(PDEs) [16]-[20]. We direct an interested reader to [18] for an 

excellent summary of the methods and to [16] for a thorough 

study of adjoint methods as they pertain to adaptive 

refinement for the numerical solution of differential equations 

in general. These methods, although well-explored from a 

theoretical perspective and more frequently applied in other 

numerical fields like computational fluid dynamics (CFD), 

have not seen such widespread utilization in CEM for 

frequency-domain techniques, and have seen very little 

application toward higher-order CEM techniques. Previous 

work on the application of adjoint methods to CEM has most 

often focused on their implementation and application using 

time-domain methods [21]-[27]. The majority of this work has 

focused around sensitivity analysis, the calculation of QoI 

gradients with respect to various input parameters, and often 

the application of these gradients toward optimization, either 

directly through gradient-based approaches or indirectly 

through the construction of surrogate functions [22], [24]-[29]. 

Most implementations have relied on finite-difference time-

domain (FDTD) approaches with various modifications. 

Sensitivity analysis has been applied to quantify QoI response 

to material discontinuities [26], optimize transmission line 

design [27], perform sensitivity analysis for photonic devices 

[25], optimize antennas [23], [29], and on similar optimization 

problems using frequency-domain techniques. The paper [28] 

notably applies adjoint sensitivity analysis to a higher-order 

two-dimensional triangular-element FEM solver for design 

optimization of planar microwave devices. The optimization 

approach in [28] uses adjoint information only for 

computation of the gradient of a QoI with respect to various 

parameters, but it does not apply this information to remesh or 

quantify numerical error.   

Previous work in CEM on the quantification of numerical 

error has focused predominantly on adjoint-free methods 

quantifying error in the field solution by estimating a norm 

directly [30]-[33] or indirectly by convergence of this norm 

[34]. These methods form an a posteriori error estimate from 

an established norm. Our approach differs substantially by our 

consideration of approximate error in a quantity of interest due 

to the solution error, rather than a norm of a quantity 

approximating the solution error itself, and the use of the 

adjoint solution toward this goal. Use of a norm can lead to a 

rigorous bound to the solution error, but unfortunately, these 

bounds often overestimate the true error due to local and 

global cancellation effects. By neglecting the norm, our work 

exploits cancellation effects for more-accurate estimates and 

more precisely targeted refinement of the discretization. While 

examining the solution error can be useful if the application 

(i.e., our motivation for solving the PDE) is unknown, we are 

most often interested in one or few quantities derived from the 

field solution, e.g., radar cross section of a scatterer. In such 

cases, computing an approximation of the QoI error from an 

existing field error estimate is often less accurate than 

approximating the QoI in the error directly [14], [16]. 

Refinement based on the former, established approach, 

therefore tends to oversaturate the discretization, refining 

more elements than necessary for the given QoI when 

compared to the latter approach explored in this paper. Most 

closely related to the a posteriori error estimation in the 
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present work is that of Monk and Suli [35], [36], in which the 

adjoint is used to derive a posteriori error bounds for the far-

field pattern, with the error estimate then applied to refining 

the discretization. However, unlike the present work, these 

papers produce a highly discretization-dependent error 

estimate specifically for the far-field pattern, limiting its 

applicability to first-order (linear) finite element approaches 

with far-field QoI. Meanwhile, the estimate given in this 

present paper is presented for a general QoI (with 

backscattered field given as an example QoI) and is broadly 

applicable to FEM solvers of arbitrary basis function order. 

This allows  application to h-refinement, similar to [36], and 

rapidly-convergent p-refinement and hp-refinement. In three-

dimensional cases, the error estimates defined in this paper are 

straightforwardly extensible to elements of arbitrary geometric 

shapes, while the estimate given in [35] is defined specifically 

for tetrahedra. Unlike [30]-[36], the present work also gives 

in-depth examples of the broadly applicable sensitivity 

information that can be attained inexpensively where the 

adjoint problem is solved (for instance for error estimation) 

and a discussion of its applications. 

In this paper, we investigate useful applications of the 

adjoint problem and its solution toward frequency-domain 

CEM methods. We demonstrate how QoIs can be expressed in 

inner product form and show how this form can efficiently 

generate gradient information for a given QoI with any 

number of parameters using the adjoint solution. We give two 

useful examples of such parameters using the backscattered 

field amplitude as the QoI. A one-dimensional higher-order 

FEM scattering solver is chosen as an ideal testbed to 

investigate the usefulness of the proposed techniques due to its 

conceptual and computational simplicity, ease of 

implementation and replicability, and the clarity with which 

results from a one-dimensional model can be displayed. 

Namely, it is advantageous to represent much of the 

information obtained by adjoint methods as a scalar field over 

the computational domain, which facilitates displaying data in 

a useful and intuitive manner and enables straightforward 

qualitative and quantitative conclusions of the analyses. 

Results and observations from this model extend naturally to 

higher-dimensional solvers and more-complicated CEM 

techniques and problems. Describing how the gradient 

information can be used to produce a reconstruction of a QoI’s 

response to varying parameters, we invoke the higher-order 

parameter sampling (HOPS) technique [37] to produce these 

reconstructions with applications to the example problem. We 

highlight how such gradient information and response 

reconstructions can be applied to practical CEM problems 

requiring many solves, for instance, RCS computation, 

antenna design, optimization, and Monte Carlo simulation. We 

introduce a posteriori error estimation techniques using the 

adjoint solution [38], and apply these error estimates to novel 

targeted p- and h-refinement schemes. To the best of our 

knowledge, this is the first demonstration of the applicability 

of both adjoint-based a posteriori error estimation and 

adaptive discretization refinement in frequency-domain CEM 

using arbitrary-order basis functions. In addition, this paper 

introduces to CEM the application of a dual-weighted residual 

(DWR) estimate to the adjoint-informed a posteriori error 

estimation, the selective adaptivity based on error cancellation, 

and p-refinement using the adjoint solution. The adjoint-based 

DWR technique for CEM proposed in this work produces an 

accurate, signed error estimate, which is exploited to cancel 

local error contributions by grouping. This results in rapid 

reduction in global QoI error with a high selectivity not 

possible using existing norm-based error estimates in CEM 

that seek to rigorously (or approximately) bound error in a 

norm.  

For a useful and broadly-applicable means of evaluating the 

performance of different refinement approaches, we introduce 

a metric based on the degree of monotonicity of a given 

refinement to quantify its efficacy in comparison with other 

approaches. Using the same example scattering problem, we 

propose targeted, adaptive discretization (mesh or model) 

refinement heuristics informed by adjoint element-wise error 

contribution estimates. These heuristics perform exceptionally 

well, greatly reducing error in a QoI for only modest increases 

in the number of unknowns, while also near-monotonically 

reducing error with respect to an increasing number of refined 

elements. The results demonstrate the benefits that adjoint 

techniques offer for adaptive p- and h-refinement schemes 

using these heuristics. Although demonstrated with a higher-

order solver, all derived and applied techniques generalize to 

low-order methodology, and the results in this study show the 

usefulness and efficiency of the proposed techniques to low-

order methods with h-refinement only. A goal of this work is 

also to promote the use of adjoint approaches within future 

CEM techniques and implementations as a means of attaining 

useful refinement, optimization, and uncertainty quantification 

methodologies. Some preliminaries of this study are presented 

in a summary form in [39] and [40].  

Section II describes the one-dimensional scattering test 

problem and briefly outlines the higher-order one-dimensional 

FEM implementation and its relevant components. Section III 

describes the theory behind the adjoint techniques 

demonstrated, providing specific formulae for an example 

QoI, gradients of this QoI with respect to two example 

parameters, QoI error estimation, and element-wise error 

contribution estimation. Section IV gives extensive and clear 

numerical results for adjoint methods theoretically outlined in 

Section III. Section IV shows reconstruction of QoI response 

to example parameters using the HOPS technique, element-

wise error contribution estimates over the computational 

domain, and a comparison of illustrative targeted refinement 

methods based on such estimates for both p- and h-

refinements. Section V then summarizes the main conclusions 

of the study, putting them in a broader perspective of CEM 

research and practice.  

II. ONE-DIMENSIONAL SCATTERING PROBLEM SOLVED BY 

HIGHER-ORDER PML-TRUNCATED FEM 

We consider a simple electromagnetic scattering problem––

the infinite lossy dielectric slab scatterer in a one-dimensional 

domain––so that the underlying physics, solutions, and 

numerical method parameters are straightforward to describe. 

We define the model domain and material subdomains for an 

infinite (in y and z) dielectric slab with air and a perfectly 

matched layer (PML) domain on either side as specified in 

Table I.  
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Table I:  Model domain and material subdomains for scattering from the 

infinite (in y and z) lossy dielectric slab truncated by PML.  

PML 0t x    
Left PML subdomain (tPML is the selected PML 

thickness) 

0 x    Left air subdomain (of thickness λ) 

x a    
Lossy dielectric slab subdomain (of thickness 

 a – λ) 

a x L   Right air subdomain (of thickness L – a) 

PMLL x L t  

 
Right PML subdomain (of thickness tPML) 

 

On this domain, we use the double-curl frequency-domain 

wave equation [1] and the associated boundary condition,  
 

-1 sc 2 sc -1 inc 2 inc
r 0 r r 0 rμ ε μ εk k      E E E E ,       

PML PMLt x L t                                                             (1a) 

                             
sc 0 n E ,  PMLx t  ,  PMLx L t                                   (1b)        

 

where r and r are complex relative permittivity and 

permeability of the inhomogeneous medium (tensors for 

anisotropic materials), E
inc

 and E
sc

 are the incident and 

scattered electric field complex intensity vectors, 

 is the free-space wave number,  is the 

angular frequency of the implied time-harmonic variation, and 

n is the outward unit normal on the boundary surface. 

Enforcing homogeneity in the y and z directions and restricting 

the incident field to have only a z component that depends 

only on x, we simplify (1) to 
 

sc 2 sc
0 r

r

d 1 d
( ) ε ( ) ( ) ( )

d μ ( ) d
z zE x k x E x g x

x x x
   ,        

PML PMLt x L t                                                             (2a) 

                                   

inc 2 inc
0 r

r

d 1 d
( ) 1 ( ) (ε ( ) 1) ( )

d μ ( ) d
z zg x E x k x E x

x x x

 
    

 
,   

PML PMLt x L t                                                             (2b) 

 
sc ( ) 0zE x  ,  PMLx t  ,  PMLx L t                                  (3)        

                                                              

With the incident field representing a z-polarized plane 

wave propagating forward along the x-axis and the standard 

PML implementation, we have  
 

0j
inc

PML PML

e 0
( )

0 0,

k x

z
A x L

E x
t x L x L t

  
 

     
                 (4) 

 

where we choose A = 1 to normalize the field. The material 

parameter functions in the subdomains defined in Table I are 

given by:  
 

d
r

PML PML PML

1 0

ε
ε ( )

1

1 j 0,

x

x a
x

a x L

t x L x L t







 


 
 

 
       

          (5a)

          

r
PML PML PML

1 0
μ ( )

1 j 0,

x L
x

t x L x L t

 
 

      
              (5b)  

 

with εd denoting the equivalent complex relative permittivity 

of the lossy dielectric slab of relative permittivity εr and 

conductivity σ [41],  
 

d r
0

ε ε j
ε




                                                                        (6)                                                                            

 

The lossy dielectric slab scattering problem is solved using 

a higher-order PML-truncated FEM approach similar to that 

described in [10], [11], [42], and [43]. The domain is 

discretized using line segments along the x-axis with scalar 

basis functions. This geometric simplicity allows for simple h-

refinement (e.g., an element can be split in half just by adding 

a new element boundary node at its midpoint).  

Like their three-dimensional counterparts in [42], the basis 

functions used for the one-dimensional solver are defined in a 

domain parameterized by a single coordinate s which ranges 

from −1 to 1. The element-specific index of the chosen basis 

function is given by i, and the field expansion order for a 

given element is denoted M. Note that the higher-order 

approach outlined in [42] allows for arbitrary x-domain sizes 

and arbitrary, positive field expansion orders for adjacent 

elements. This allows adjacent elements to be h- and p-refined 

to differing degrees entirely independently of each other. The 

ith basis function for an element is given in the s domain as:  
 

1

0.5(1 ( 1) ) 0,1
( )

0.5(1 )(1 ) 2

i

i i

s i
u s

s s i M

   
 

   

                   (7) 

  

The first and second basis functions maintain field 

continuity between adjacent elements, while the higher-order 

basis functions allow for additional p-refinement. Note that 

functions in (7) are just one simple choice of higher-order 

scalar bases on the s-parametric domain, and alternative 

hierarchical polynomial basis functions with improved 

orthogonality and conditioning properties could also be 

chosen. For example, a one-dimensional variant of those used 

in the higher-order FEM-PML method [43] may be easily 

implemented.  

III. THE ADJOINT SOLUTION AND ITS APPLICATIONS 

A. The Adjoint Problem and the Quantity of Interest 

The notion of an adjoint problem generalizes the method of 

Green’s functions [38], [44], [45]. To define the adjoint 

operator for a given problem, we must cast the problem in 

linear operator form. For the lossy dielectric slab scattering 

problem, we consider the Dirichlet boundary value problem 

given in (2)-(3). The differential equation in (2a) can be 

expressed in linear operator form as   
 

sc
zL E g                                                                                 (8)                                                             

 

L represents the “forward” operator the forward solution (the 

scattered electric field), designated sc
zE . The adjoint operator 

of L is the operator L
adj

 that satisfies the Lagrange identity 

[38],  

000 k
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adj adjsc adj sc, ,z zL LE E E E                                              (9)    

 

with angle brackets denoting the L
2
 inner product on 

functions. The data for the adjoint problem is, in this case, a 

QoI determined by a linear functional on the forward solution. 

In inner product form, the QoI is given as 
 

sc scQoI [ ] ,z zq E E p                                                       (10)                                                  

 

where p is a function that determines an instrumental or 

measurement characteristic. For instance, the QoI could be 

chosen as the field value at a given point in the domain by 

defining p as a Dirac delta function at that point, in which case 

the adjoint solution is the Green’s function [45]. The sampling 

property of the Dirac delta function when the inner product is 

applied then evaluates the field at one point. For a given 

measurement characteristic, the adjoint problem is 
 

adjadjL E p                                                                         (11) 

 

Note that, in a physical interpretation of (11), the measurement 

characteristic defining some QoI on the forward solution 

becomes the excitation of the adjoint problem. As p defines a 

unique QoI, (11) implies that the adjoint equation must be re-

solved with a new right-hand-side for each new QoI, 

analogous to re-solving a forward problem with new incident 

fields.  

In our study, we choose a QoI that yields the magnitude of 

the reflected field from the lossy dielectric slab subject to 

some incident field. We express the solution in the air-filled 

region 0 x    as 
 

0 0j jsc
i, r,( ) e e

k x k x
z z zE x E E


  , 0 x                 (12)

              

where i,zE  and r,zE  are (complex-valued) numbers 

characterizing the forward and backward traveling 

electromagnetic fields, respectively. Since A = 1 in (4) and the 

zero-phase point of the reflected field is x = 0, r,zE is equal to 

the complex reflection coefficient. We express the amplitude 

of the reflected field as a QoI in inner product form (10) as 
 

0

0

0

2 /
jsc sc0

0

jsc sc0

0

[ ] e d
2

2
, e ( ) ( ) ,
2

k
k x

z z

k x
z z

k
q x

k
H x H x

k












 
    

 

E E

E E p

                         (13)  

 

where H(x) is the unit step (Heaviside) function and p denotes 

the defined measurement characteristic. The behavior of this 

QoI can be evaluated from (13) on a function of the form (12) 

yielding  
 

0 0j j
i, r, r,[ e e ]

k x k x
z z zq E E E


                              (14)

       

Note that in (14), it is assumed that the surface of the 

dielectric slab is outside the limits of integration. The idea 

behind this type of functional evaluation is easily extended to 

a higher-dimensional scattering problem––different 

components of the spatial Fourier transform of a scattered 

electromagnetic wave along a closed surface in free space 

effectively gives the scattered electromagnetic field in 

different far-field directions.  

To derive the adjoint operator for (2a), we apply the 

Lagrange identity in (9), where the left-hand side of (9) may 

be expressed as 
 

 

PML

PML

PML

PML

adj* sc

r

adj* 2 sc
0 r

d 1 d
( ) ( ) d

d μ ( ) d

( ) ε ( ) ( ) d

L t

z

t

L t

z

t

E x E x x
x x x

E x k x E x x









 
  
 





                                   (15)                                 

 

with 
adj

E  denoting the unknown adjoint solution. Integrating 

the first term in (15) by parts, it becomes 
 

    

PML

PML

PML

PML

adj* sc

r

adjsc *

r

1 d
( ) ( )

μ ( ) d

1 d d
( ) ( )d

μ ( ) d d

L t

z

t

L t

z

t

E x E x
x x

E x E x x
x x x









 



                                   (16)                                                

 

Then integration of the second term of (16) by parts results in  
 

    

PML

PML

PML

PML

adjsc *

r

adjsc *

r

1 d
( ) ( )

μ ( ) d

d 1 d
( ) ( )d

d μ ( ) d

L t

z

t

L t

z

t

E x E x
x x

E x E x x
x x x













                                 (17) 

 

Applying the forward boundary conditions from (3), we cancel 

the first term of (17). By similarly cancelling the first term in 

(16), we enforce the adjoint boundary conditions, 
 

adj
PML

adj
PML

( ) 0

( ) 0

E L t

E t

 

 

                                   (18) 

 

The FEM approach studied in this paper utilizes in general a 

PML terminated in a perfect electric conductor (PEC) to 

truncate the computational domain. As such, this treatment of 

the first term in (16) and (17) is universally applicable for this 

method and is analogously true in two and three dimensions. 

We next rewrite (15) by rearranging its second term and 

applying the results of integration by parts, yielding 
 

PML

PML

PML

PML

adjsc *

r

adjsc 2 *
0 r

d 1 d
( ) ( )

d μ ( ) d

( ) ε ( ) ( )

L t

z

t

L t

z

t

E x E x dx
x x x

E x k x E x dx









 



                                     (19) 
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from which we recover the form of the adjoint operator on the 

right-hand side of (9) by taking the complex conjugate,  
 

adj adj adj2 *
0 r*

r

d 1 d
( ) ε ( ) ( ) ( )

d dμ ( )

adjL E E x k x E x p x
x xx

          (20) 

       

Note the similarity of the adjoint equation (20) to the 

forward equation (2a). We see that the one-dimensional 

analogue of the double-curl wave equation (1a) is nearly self-

adjoint, its adjoint being described entirely by complex 

conjugation of the material parameters. 

B. A Posteriori Error Estimation and p-/h-Refinement 

Accurate estimation of error in computational simulation 

results is a key component in uncertainty quantification [14]. 

Additionally, adaptive p- and h-refinement schemes require 

indicators of the error in a QoI on which the adaption is done, 

namely, new field/current approximation orders and/or new 

element sizes are assigned in the new, refined model. 

Furthermore, in CEM problems requiring many computational 

simulations, it is useful to have an estimate of whether 

accuracy of a forward solution for a given parameter set and 

discretization is sufficient for the desired tolerance, or if 

refinement is needed for subsequent solves. Such problems, 

including optimization, antenna design, and radar cross-

section determination, are common in CEM. An adjoint-based 

a posteriori error estimate can address each of these needs.  

Due to the Galerkin orthogonality property [45], computing 

this error estimate essentially involves evaluating a numerical 

approximation to derivatives of the adjoint solution, and 

therefore requires that the adjoint problem be solved on a 

discretization different than that used for the forward solution, 

for instance, using either finer geometric elements or higher-

order basis functions. In general, the adjoint discretization 

need not present more unknowns than the forward 

discretization, but for more-accurate estimates it is desirable to 

compute the adjoint solution using a finer discretization. The 

use of hierarchical basis functions in this work makes the 

calculation of many of the required degrees of freedom 

simpler.  

We express the numerical solution of the forward problem 

on a given mesh as 
 

sc sc

b

α ( )

i

z z i i
u

u x 


E E

V

,                          (21) 

 

where Vb is the space of basis functions for the forward 

solution. Additionally, we express the numerical solution to 

the adjoint equation by 
 

adj adj
β ( )

b'i

i i
u

u x 


E E

V

,                         (22) 

 

with Vb’ designating the space of basis functions for the 

adjoint problem, where the M in (7) for each element has been 

increased by 1 from Vb. Also, we let 
adj

hπ E denote a 

projection or interpolant of the adjoint solution into the 

discrete space Vb in which we numerically solve the forward 

problem. In this work, 
adj

hπ E is defined by a least squares 

approximation of 
adj

E in the Vb subspace of Vb’. Following 

the arguments expressing the QoI in terms of the adjoint 

solution above, the a posteriori estimate on the error in the QoI 

is   
 

adj adjsc sc
h

adj adjsc
h

r

adj adj2 sc
0 r h

, ( ), π

1 d d d
, π

μ ( ) d d d

ε ( ) , π

z z

z

z

g x

x x x x

k x

  

 

 

E E p E E

E E E

E E E

                                      (23)           

 

Essentially, (23) represents the inner product (in weak form) 

of the residual of sc
zE and a weight determined by the adjoint 

solution 
adj

E , so it is also called a dual-weighted residual 

(DWR) estimate. The residual quantifies how well the 

numerical solution solves the differential equation while the 

adjoint weight quantifies how the local residual affects the 

global error [14]. 

As the adjoint-based a posteriori error estimate requires an 

additional numerical solve on a finer discretization, it may 

seem counterintuitive to spend this on an adjoint solve. We 

recall Richardson extrapolation suggests the classical 

approach to obtain an error estimate on the accuracy of a 

forward solution on a given discretization, which is obtained 

by subtracting the forward solution from a more accurate 

forward solution obtained from a refined discretization. 

Because the classic estimate is on the error of the solution 

rather than a QoI, the level of refinement needed for reliably 

accurate estimates using the classical approach is generally 

higher than needed to compute an accurate a posteriori error 

estimate [14]. Moreover, the classical approach does not yield 

an estimate on a QoI that distinguishes residuals determined 

by local discretization choices and the effects of stability as 

determined by the adjoint solution, hence the classical 

estimate is less useful for adaptive discretization [14]. Finally, 

once obtained, the adjoint solution can be used for other 

purposes, e.g., optimization and sensitivity analysis. 

The standard FEM implementation computes integrals 

through the domain element-by-element; the inner product 

integrals in (23) are evaluated in a similar manner, with 

integrals first computed over each element separately and then 

summed to obtain the final error estimate. The information at 

the intermediate step before summation is immensely useful 

toward remeshing and determining which locations in the 

mesh are most in need of refinement. This information is 

referred to as the element-wise error contribution estimate and 

can be represented as a vector of error contribution estimates 

from each element  
 

1 2( , ,..., )Ne e ee                                                                  (24)                                                           

 

where ei denotes the error contribution of the ith element and 

N is the total number of elements. The sum of (24) then gives 

the total QoI error estimate. 
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C. Obtaining and Utilizing Gradient Information from the 

Adjoint Solution 

A classical first-order finite difference approach to compute 

the gradient of a QoI with respect to P independent parameters 

requires a minimum P+1 solves of the forward problem. Using 

adjoint methods, the same gradient information is obtained 

using a single adjoint solve over a finer discretization as 

expressed in (22), requiring only an expression of the partial 

derivative of the operator with respect to each parameter as 

shown below. From [38], we use a Taylor expansion of the 

QoI, represented here in inner product form as in (10), at an 

arbitrary parameter value, r, in terms of a known value of that 

QoI for a nominal parameter value, r0, 
 

adj adjsc sc sc
,0 ,0 0, , ( ), ,z z r zLD r r   E p E p E E R E     (25)                                                                   

 

where 
sc

,0zE represents the forward solution at r0, Dr denotes 

the Frechet derivative operator, in this case with respect to r, 

and R is a higher-order remainder term.  

Neglecting the remainder term, we obtain a linear 

approximation for the QoI around the nominal parameter 

value using the higher-order parameter sampling (HOPS) 

method [37], 
 

adjsc sc sc
,0 ,0 0, , ( ),z z r zLD r r  E p E p E E                    (26)                                                                    

 

with the partial derivative of the QoI with respect to the 

chosen parameter near the nominal parameter value given by 
 

adjsc
0 ,0( ) ,r z

q
r LD

r





E E                                                   (27)                                                                  

 

The gradient of a QoI with respect to multiple parameters, 

each around a nominal value, can then be formed by a vector 

of partial derivatives of form (27), requiring only the 

evaluation of inner products with an adjoint solution, rather 

than numerous additional perturbed solutions of the forward 

problem. 

 To briefly demonstrate where (27) comes from and how the 
sc
0rLD E term may be evaluated, we begin by noting 

 

sc sc, ,r r z r zD q D D E p E p                                           (28)                                                                  

 

Applying (9) and (11), we then get 
 

adjsc ,r r zD q LD E E                                                          (29) 

 

Now applying the Frechet derivative operator to both sides of 

(8), we write 
 

sc sc sc

sc sc

[ ] [ ]r z r z r z r

r z r r z

D L D L LD D

LD D D L

   

 

E g E E g

E g E
                        (30) 

IV. NUMERICAL RESULTS AND DISCUSSION 

A. HOPS for the Lossy Dielectric Slab Scatterer 

We first present results for HOPS described in Section III.C 

applied to the lossy dielectric slab scattering problem 

described in Section II with the reflected field amplitude QoI 

described in Section III.A. Implementing HOPS for two 

parameters, the imaginary part of the slab relative permittivity 

and the left slab-air interface location, we show the efficacy of 

this technique in obtaining derivative information and 

approximate reconstructions of QoI response to changing 

parameters from only a few sample points.   

Separating the slab complex relative permittivity into real 

and imaginary parts,  
 

rε ( ) α jβ, λx x a                                                       (31)                                                              

 

we choose β as the HOPS parameter with nominal value β0. 

The linear approximation of the QoI around β0 can then be 

expressed in the form of (26) as  
 

0

adj2 sc 2 inc
0 r ,0 0 r 00

(β) (β )

[ D ( ε ( ) ) D ( (ε ( ) 1) )], (β β )z z

q q

k x k x 

 

    E E E
             (32)                                                                                                                               

 

which, writing the inner products in integral form, is given by   
 

adj*2 sc inc
0 0 0 ,0 0(β) (β ) (β β ) j ( ( ) ( )) ( )

a

z zq q k E x E x E x dx



             (33)                                                          

 

Note that all integrals over elements within the slab required 

for evaluation of (33) are calculated during assembly of the 

stiffness matrix for the FEM, provided each element in the 

integration domain has a homogeneous permittivity value. The 

HOPS technique is applied to a set of 5 nominal parameter 

values to reconstruct the response of the QoI to β. Results 

generated using first-order forward solves and second-order 

adjoint solves with h-uniform elements are overlaid in Fig. 1 

with the QoI response over the same parameter range obtained 

by analytical solution of (2)-(3). Each of the five lines 

obtained by (33) at the five sample points is truncated at 

intersections with its left and right neighbors to produce a 

piecewise-linear reconstruction of the QoI response.  

The five-point HOPS results in Fig. 1 agree very closely 

with the analytical solution, both in the real component and 

imaginary component, despite a large parameter domain and 

low number of sample points. A piece-wise linear 

approximation of a QoI response in this form has many useful 

applications. For instance, such an approximation could be 

used as an inexpensive surrogate function for optimization, 

requiring fewer expensive direct evaluations of the QoI 

response by forward solves.  The approach in (33) can be 

easily extended to variations in other material parameters and 

higher-dimensional problems, requiring only an expression for 
sc
0rLD E from the chosen problem.  

It is often of great interest in practical CEM problems to 

determine effects of the location of a material interface on 

some QoI, for instance the response of the RCS in a given 

direction to the shape of a scatterer. We give a one- 
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Fig. 1. Higher-order parameter sampling using five sample points to produce a 

linear reconstruction of the response of the reflected field amplitude to the 

imaginary component of the slab relative permittivity. Results are generated 

using first-order forward solves and second-order adjoint solves. The domain 

length is L = 4 m, the slab left boundary location is  = 1 m, the frequency is f 
= 600 MHz, and the real part of the slab relative permittivity is α = 7. 

Elements are h-uniform with size 0.02 m. Samples were taken at β = [−2.0, 

−1.0, −0.5, −.025, 0]. 
 

dimensional analogue of this problem here, choosing the 

analogous QoI from (13) and approximating its response to 

changes in the left slab interface location . The permittivity 

function in the subdomain 0 < x < L can be represented in 

terms of unit step functions as 
 

r d 0 dε ( ) 1 (ε 1) ( λ ) (ε 1) ( )x H x H x a                            (34)

                     

We may approximatively express q(), again using the HOPS 

method from (26),  as  
 

0

adj2 sc inc
0 λ r ,0 λ r 00

(λ) (λ )

[ D (ε ( ) ) D ((ε ( ) 1) )], (λ λ )z z

q q

k x x

 

   E E E
              (35)                                                  

 

which requires the calculation of the derivative of the 

permittivity function (5a) with respect to  for direct 

implementation. The Frechet derivative of the permittivity 

function can be written in terms of the Dirac delta function as 
 

r d 0D ε ( ) (ε 1)δ( λ )x x                                       (36) 

 

which, after evaluating the inner product using the sampling 

property of the Dirac delta, gives a form of (35) that can be 

evaluated directly:   
 

*2
0 0 0 d0

sc inc
,0 0 0 0

(λ) (λ ) [ ( λ )(ε 1)

( ( λ ) ( λ ))](λ λ )

adj

z z

q q k E x

E x E x

   

   
                                  (37) 

  
 Note that here we have assumed a piecewise constant 

permittivity function (34). Were the permittivity function 

instead smooth and continuous, evaluating the corresponding 

analogue of (35) becomes simpler, requiring no use of the 

sampling property of the Dirac delta as in (37). In fact, we 

only require that a function describing the material renders 

both sides of (8) Fréchet differentiable with respect to the 

chosen parameter. 

Similar to Fig. 1, Fig. 2 shows results of a five-sample 

HOPS reconstruction of the QoI response, this time with 

respect to the x-coordinate of the left slab face. Results are 

again generated using first-order forward solves, second-order 

adjoint solves, and h-uniform elements. We again see 

excellent agreement between the HOPS result and the 

analytical QoI response over the parameter domain.  
 

 
 

Fig. 2. Higher-order parameter sampling using five sample points to produce a 

linear reconstruction of the response of the reflected field amplitude to the 

location of the left slab face, using first-order forward solves and second-order 

adjoint solves, with L = 4 m,  = 1 m,  f = 600 MHz, slab relative permittivity 

εr  = 7 − j1.8, and h-uniform elements of size 0.02 m. Samples were taken at 0 

= [0.96, 0.98, 1.0, 1.02, 1.04]. 

B. Element-Wise Error Contributions 

We next show the application of the adjoint method to obtain 

e, the element-wise error contribution estimate, for a given 

problem. Maintaining most parameter values from solves in 

Section IV.A and coarsening the element size to 0.05 m, we 

compute e through a partial (un-summed) evaluation of (23) as 

described in Section III.B. Fig. 3 shows the real and imaginary 

components of e plotted throughout the different material 

subdomains, with ei for the ith element plotted at the x-

coordinate of the element’s midpoint.  
 

 
Fig. 3. Real and imaginary element-wise error contribution estimates over the 

computational domain. Results are generated using first-order forward solves 

and second-order adjoint solves, with L = 4 m,  = 1 m,  f = 600 MHz, εr  = 7 
− j1.8, and h-uniform elements of size 0.05 m.  
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We note several crucial things from the element-wise error 

contribution in Fig. 3. Most importantly, the real and 

imaginary error contributions are oscillatory, varying from 

positive to negative values through the domain. As the total 

error estimate is obtained by the sum of these individual error 

contribution estimates, we can conclude that there is a high 

degree of cancelation between error contributions throughout 

the domain. Clearly this cancelation is not complete, or the 

error estimate given in (23) would be zero. An interesting 

question then becomes where in the computational domain 

this lack of cancelation occurs––which elements are 

contributing the most to the total error estimate. This is a 

deceptively ill-posed problem, however, see [45]. We cannot 

directly assign the bulk of the residual error to any one set of 

elements. To do so suggests some necessary ordering to e.  

It is difficult if not impossible to apply a universally-

applicable and consistent method to identify which elements 

contribute the most to the total error estimate that relies on the 

ordering of elements in the spatial domain or the order in 

which error contributions are summed [45]. No ordering 

actually exists for the summation of e—the error contribution 

of a given element can be said to cancel with that of any other 

element or combination of elements, no matter how distant the 

elements are in the computational domain. To accurately apply 

this element-wise error contribution estimate toward targeted, 

adaptive mesh or model refinement, we must define a means 

by which to identify a “bad” element that relies on no such 

ordering. We describe such heuristics in the following section.  

C. Targeted h- and p-Refinement Using Element-Wise Error 

Contribution Information 

We show in this section the application of two un-ordered 

refinement heuristics and their applications to h- and p-

refinement on a variety of evaluations of error in the QoI for a 

three-dimensional parameter space consisting of , α, and β. 

The different locations in this search space at which the QoI 

error estimate is evaluated are given in Table II.  

 
Table II:  Parameter space locations at which QoI error estimate is evaluated 
for refinement of the results in Section IV.C.  

Plot Identifier α β  (m) 

Case A 7 −1.8 1 

Case B 7 −1.8 1.2 

Case C 7 −1.8 0.8 

Case D 7 −4 1 

Case E 7 −4 1.2 

Case F 7 −4 0.8 

Case G 3 −1.8 1 

Case H 3 −1.8 1.2 

Case I 3 −1.8 0.8 

Case J 3 −4 1 

Case K 3 −4 1.2 

Case L 3 −4 0.8 

 

A refinement heuristic can be stated as one by which 

elements in the domain are ranked according to the expected 

error reduction incurred by their refinement. As described in 

Section IV.B, defining such a heuristic is difficult due to error 

cancellation effects between elements. Therefore, a successful 

refinement heuristic must in some way take into account the 

aggregate effects of error cancellation, rather than applying a 

ranking methodology to each element dependent only on the 

error contribution of that element. Additionally, the element-

wise error contribution for each element does not vary 

exclusively with its own size or basis function order, but is 

instead dependent on the discretization fineness for all 

elements. That is to say if we have a positive total error 

estimate, we cannot simply refine a few of the elements with 

the largest positive error contributions and hope to sway the 

sum toward zero. This is in practice a very poor approach and 

will typically result in higher total error despite refinement in 

the mesh.  

Examination of each refinement approach in this section is 

performed by evaluating the relative error of the QoI 

calculated by a forward solve on a mesh with K refined 

elements at each of the locations in the parameter space 

defined in Table II with respect to the analytical QoI at those 

parameter space locations. A base mesh (K = 0) is used for all 

test cases that contained 100 first-order elements of size 0.05 

m. K is then varied from 0 to 100 for each simulation, using 

the heuristic to select a constant dK elements to refine at each 

subsequent refinement. p-refinement of an element consisted 

of increasing M for that element by 1, while h-refinement 

entailed splitting the element into two elements of size 0.025 

m. Relative error calculated in this manner is here referred to 

simply as error. Adjoint solutions are calculated on meshes of 

one order higher than the forward solution for each location in 

the parameter space to obtain an error estimate for each 

location and K. These error estimates are added back onto the 

QoI to produce a corrected QoI, and the relative error of this 

corrected QoI which with respect to the analytical QoI is 

referred to as the corrected error. All relative error values are 

given as percentages for clarity. A vector of relative error 

values, formed separately for uncorrected and corrected 

results, is recorded for each test case. The entries of these 

vectors correspond to the relative errors for each K tested. To 

show general trends, these vectors are averaged for a given 

heuristic trial, giving for each a vector of average relative 

errors, k, over the range of K for both uncorrected and 

corrected errors. 

To quantify the efficacy of various refinement heuristics, 

we define a so-called improvement metric as 
 

sign(diff ( ))
( )

length( )
I 

 k
k

k
                                                         (38)                                                                  

 

where k represents either the uncorrected or corrected error, 

length(k) is the length of the vector k, and diff(k) returns a 

vector of length one lower than k containing the differences in 

value between adjacent entries of k. A lower value of this 

metric implies better performance with −1 or 1 representing a 

heuristic that always decreases or increases, respectively, the 

error with increasing number of refined elements. An I value 

of zero represents a heuristic that has an equal chance to 

increase or decrease error with additional refined elements.  

The first refinement heuristic explored is referred to as the 

magnitude refinement heuristic. This heuristic simply ranks 

elements by the absolute value of their error contribution 

estimate, such that elements with higher error contribution 

estimate magnitude rank higher. Note that this heuristic does 

not directly satisfy our earlier desire for a heuristic that 
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considers aggregate error cancellation effects for refinement 

rather than applying a ranking methodology to each element 

dependent only on the error contribution of that element. 

Respective results for uncorrected and corrected relative errors 

and two different dK values for the magnitude refinement 

heuristic applied to p-refinement are shown in Fig. 4. Fig. 5 

shows corresponding results for the magnitude refinement 

heuristic applied to h-refinement.  

We see from Fig. 4 that the magnitude refinement heuristic 

informed by adjoint information reduces the QoI relative error 

from ~30% to <1% by K = 30 when applied to p-refinement. 

We also see that the corrected QoI obtained by adding the 

error estimate from (23) obtained by the adjoint solve to the 

forward QoI is vastly more accurate, with an initial relative 

error of ~0.42% which is reduced below 0.01% by K = 30. For 

K = 30, we have therefore reduced the initial error in the QoI 

by over three orders of magnitude with just four solves––two 

forward and two adjoint. Note also that all refinement 

performed here is entirely automated, requiring no input from 

the user other than a desired K, and furthermore that the 

technique used is not dependent on the dimension of the 

problem, variety of element, or volume vs. surface nature of 

the discretization. This demonstrates the usefulness of adjoint-

assisted targeted, adaptive refinement for difficult-to-refine 

higher-order techniques based on the FEM and/or MoM where 

efficient automated discretization refinement presents a 

challenge.  

As is inherent to the scaling of FEM and MoM error with h-

refinement vs. p-refinement, we see that convergence is more-

gradual in Fig. 5 for the magnitude refinement heuristic 

applied instead to h-refinement. We still observe desirable 

reduction in error, however, with the relative error decreasing 

from ~30% to ~10% and ~0.4% to <0.1% for K = 60. Note 

that this does not seek to discount the usefulness of h- 

refinement as a technique––a mesh (model) insufficient to 

describe a given problem certainly requires both h- and p-

refinements to obtain a useful solution efficiently––but rather 

seeks to point out the power of adjoint-informed p-refinement 

on meshes already h-fine enough to describe the problem of 

interest.  

The second refinement heuristic explored is more 

complicated and will be referred to as the greedy refinement 

heuristic. The greedy refinement heuristic is an approximate 

approach to a more-desirable but computationally-untenable 

approach here referred to as minimum sum grouping. Instead 

of seeking the K elements that should be refined, minimum 

sum grouping seeks a solution to the problem of which 

elements should not be refined. In concrete terms, it computes 

the subset, e’, of entries in e of length length(e) − K the 

absolute value of the sum of which is the smallest possible for 

a given e and K. The K elements selected for refinement by 

this method are then the elements associated with the 

remaining K entries in e that are not in e’. 
 

 
 

Fig. 4. Relative errors of the QoI calculated at each of the locations in the parameter space defined in Table II with respect to the analytical QoI for the magnitude 
refinement method implemented with p-refinement vs. the number of refined elements: (a) uncorrected error for dK = 5, (b) uncorrected error for dK = 1, (c) 

corrected error for dK = 5, and (d) corrected error for dK = 1. 

(a) (b) 

(d) (c) 
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Fig. 5. The same as in Fig. 4 but for the magnitude refinement method 

implemented with h-refinement.  

The subset e’ is in practice not tenable to compute, as it 

requires evaluating the absolute value of the sum of all 

possible combinations of entries in e of length length(e) − K. 

The computational complexity of this problem scales 

factorially, making the application of minimum sum grouping 

to problems of even moderate element count computationally 

infeasible. Hence, we use a “greedy” refinement heuristic that 

offers a greedy approximate solution to the minimum sum 

grouping approach. We begin by computing a length(e) by 

length(e) matrix S from e with entries of the form 
 

abs( )ij i js e e                                                                   (39)                                                          

 

neglecting the diagonal entries (j = i), and we find the 

minimum sij, appending the corresponding ei and ej to an 

ordered list. We then select the second smallest sij in S that 

does not include any of the particular e entries used 

previously, appending its corresponding ei and ej to the end of 

the same ordered list. This is repeated until all entries of e 

have been included in the ordered list, or for odd length(e), 

one entry remains, in which case this entry is appended to the 

end of the list. The K elements chosen for refinement are then 

those corresponding to the last K entries in the list. The greedy 

refinement heuristic approached in this way can be evaluated 

in polynomial time. Note that the order in which we append ei 

and ej to the list for a given iteration will somewhat affect 

results. This effect becomes insignificant in practice once K 

>> 1. For the purpose of this paper, we place ej before ei. Figs. 

6 and 7 show the results for the greedy refinement heuristic 

applied to p- and h-refinements, respectively.  

We see from Figs. 6 and 7 that the adjoint-informed greedy 

refinement heuristic performs similarly to the magnitude 

refinement technique regarding error reduction over the range 

of tested K values. Comparing these figures to Figs. 4 and 5, 

note that, although both approaches trend downward rather 

smoothly [the improvement metric in (38) is strongly 

negative], this is not true of individual cases. By observation 

of the heuristic behavior for individual cases, we see there are 

several instances where the refinement of additional elements 

increases the error, sometimes substantially. Note, however, 

that very few cases exceed the initial K = 0 error for another 

K, i.e., the error may increase from one K to another, but 

rarely does it exceed the initial value (K > 0 still leads to a 

reduction in the initial error for almost all K). Exceptions to 

this, for instance in Fig. 6(d), tend to be for very narrow 

ranges of K making it less likely these undesirable K-values 

will be encountered by chance. This is reflected by a reduced 

occurrence and severity of these error-increasing K values for 

higher dK, for instance comparing Fig. 6(d) to Fig. 6(c).  

This highlights and exemplifies the previously-stated 

desirability of heuristics that take into account aggregate 

cancellation effects––the tested heuristics perform better for 

higher dK as choosing a larger pool of refined elements 

increases the likelihood the error contribution of a given 

element will be sufficiently cancelled. Heuristics that group 

elements in one way or another are therefore often more 

effective. Note then, that the magnitude refinement heuristic 

applied to dK > 1 in this way now satisfies the previously 

stated desire for a heuristic taking into account aggregate 

effects. 

(a) 

(b) 

(c) 

(d) 
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Fig. 6. The same as in Fig. 4 but for the greedy refinement method 

(implemented with p-refinement). 

 

 
Fig. 7. The same as in Fig. 4 but for the greedy refinement method 

implemented with h-refinement.  

(a) 

(b) 

(c) 

(d) 

(a) 

(b) 

(c) 

(d) 
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The greedy refinement heuristic and magnitude refinement 

heuristic are evaluated against a benchmark refinement 

method in which K elements are chosen for refinement at 

random. Results for the random refinement heuristic are 

shown in Figs. 8 and 9 as applied to p- and h-refinements, 

respectively. Comparing these figures to the results for the two 

adjoint-informed heuristics, in Figs. 4–7, we see that, although 

the random refinement approach of course achieves the same 

error reduction for K = 100 (all elements refined), error 

reduction for nearly all other values of K is significantly 

worse. 

Tables III and IV show improvement metric values, based 

on (38), for the results in Figs. 4–9 for p- and h-refinements, 

respectively. Examining the tables, we see that desirable vs. 

undesirable behavior of the heuristics demonstrated in Figs. 4–

9 can be partially captured by the improvement metric, most 

notably their degree of monotonicity. Without exception, the 

metric is poorer (less negative) for applications of the 

heuristics with dK = 1 rather than dK = 5. This reflects the 

described grouping behavior advantageous to higher dK 

values. We also note that the random refinement heuristic 

presents lower metric values than the two adjoint-informed 

heuristics in all cases, indicating the superior performance of 

the adjoint-informed techniques. In addition, examining the 

results in Table IV in comparison to those in Table III, we 

note that, interestingly, although heuristics applied to h-

refinement reduce error more slowly, they tend to do so 

somewhat more consistently, reflected in the higher 

improvement metric values for most entries in Table IV than 

the corresponding entries in Table III.  
 
Table III: Improvement metric values based on (38) for magnitude, greedy, 

and random refinement heuristics applied toward p-refinement, i.e., for the 
results in Figs. 4, 6, and 8. The best value for each column has been bolded.  

p-refinement dK = 5 dK = 1 

Heuristic Uncorrected Corrected Uncorrected Corrected 

Magnitude −0.3 −0.2 −0.22 −0.20 

Greedy −0.3 −0.4 −0.08 −0.28 

Random −0.2 −0.3 −0.02 −0.0 
 

Table IV: The same as in Table III but for h-refinement, i.e., for the results in 

Figs. 5, 7, and 9. 

h-refinement dK = 5 dK = 1 

Heuristic Uncorrected Corrected Uncorrected Corrected 

Magnitude −0.7 −0.6 −0.38 −0.10 

Greedy −0.8 −0.4 −0.22 −0.12 

Random −0.2 −0.0 −0.02 −0.04 

 

V. CONCLUSIONS 

This paper has investigated and evaluated useful 

applications of the adjoint problem and its solution for higher-

order frequency-domain computational electromagnetics 

methods. Based on implementation of HOPS, QoI error 

estimation and error correction, element-wise error 

contribution estimate evaluation, and adjoint-informed 

automated targeted p- and h-refinements, this study has 

established and validated uses of adjoint techniques for 

improved efficiency, automation, and robustness of higher-

order frequency-domain methods. Although the techniques 

applied in this paper have been demonstrated using a higher-

order solver, all, with the exception of p-refinement, apply 

with no modification to low-order solvers. We have employed 

a one-dimensional higher-order PML-truncated FEM 

scattering solver as an ideal testbed for the ease of 

implementation, clarity of displaying the results, and 

intuitiveness of drawing conclusions from analyses, which 

then extend naturally to higher-dimensional solvers, more-

complicated CEM techniques, adaptive CEM solutions, and 

problems requiring many solves.  

Adjoint-based error estimation determines accurately 

whether a given discretization sufficiently describes a 

problem, and such error estimates can be applied to automated 

h- and p-refinement heuristics with little if any input from the 

user. Such heuristics reduce error quickly and vastly 

outperform a random refinement benchmark. On the tested 

problems, these heuristics are enough to reduce error by 

several orders of magnitude while only p-refining a modest 

number of elements (30/100) by one order using hierarchical 

basis functions and only four solves (two forward and two 

adjoint). Furthermore, these techniques can reduce error by a 

factor of more than 4.5 while h-refining roughly half of the 

elements in the domain (60/100). Most usefully, the adjoint-

assisted h- and p-refinement methods we have demonstrated in 

this paper are near-monotonic in their error reduction with 

respect to number of refined elements. The usefulness of the 

demonstrated adjoint-informed refinement compounds with 

the p-refinement technique offered by higher-order FEM or 

MoM frequency-domain methods, especially on meshes 

already h-fine enough to describe the problem of interest, but 

nonetheless offers substantial error reduction and excellent 

convergence properties for low-order methods using h-

refinement schemes. In fact, while heuristics applied to h-

refinement reduce error more slowly, they result in higher 

improvement metric values than p-refinement. 

To the best of our knowledge, this is the first demonstration 

of applicability of adjoint a posteriori error estimation 

techniques to adaptive discretization refinement in the field of 

CEM using arbitrary-order basis functions. In addition, among 

the novelties this work introduces to CEM are the application 

of a dual-weighted residual estimate to the adjoint-based a 

posteriori error estimation, the selective adaptivity based on 

error cancellation, and p-refinement using the adjoint solution. 

Unlike existing error estimates used in CEM that seek to 

bound error in a norm, the signed nature of this estimate is 

exploited to cancel local error contributions by grouping, 

leading to rapid reduction in global QoI error with a high 

selectivity. Our work has produced novel targeted model 

refinement heuristics that quickly and effectively reduce error 

in a quantity of interest. The study has demonstrated the 

exceptional benefits that adjoint techniques offer toward 

targeted, adaptive h- and p-refinement schemes using these 

heuristics. It has also attained a useful and broadly applicable 

improvement metric as a figure of merit for different 

refinement heuristics while providing an instructive discussion 

of the properties of a refinement heuristic that produce 

desirable values of this metric. In addition, we have 

demonstrated how HOPS can be used to obtain useful gradient 

information with respect to several parameters with vastly 

fewer additional solves than classical methods, requiring n – 1 

fewer solves to compute the gradient, where n is the number 
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Fig. 8. The same as in Fig. 4 but for the random refinement method 

(implemented with p-refinement). 

 

 
Fig. 9. The same as in Fig. 4 but for the random refinement method 

implemented with h-refinement.  

(a) 

(b) 

(c) 

(d) 

(a) 

(b) 

(c) 

(d) 
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of parameters with which the QoI varies. The additional 

applicability of this technique toward producing surrogate 

functions for optimization has also been shown. The surrogate 

functions generated, although piece-wise linear, closely match 

complicated QoI responses to various parameters.  

In general, adjoint techniques are under-utilized in CEM 

where they could be applied to a wide variety of problems. 

The simple, one-dimensional FEM solver by which these 

relatively complicated adjoint techniques have been 

demonstrated for the purposes of this study should serve as a 

useful, easily replicable introduction to the described methods. 

The developed and evaluated adjoint techniques proposed and 

discussed in this paper may be used to derive and demonstrate 

useful applications of adjoint methods to more complicated 

CEM techniques and solvers. Namely, the methodology 

described in the paper generalizes well to higher dimensional 

problems by extension of, for instance, (11), (23), and (26) to 

the double-curl wave equation. In such a case, if three-

dimensional problems are considered, the pertinent inner 

products become volume integrals of vector fields 

representing the three-dimensional measurement 

characteristic, forward field, and adjoint field. This study 

should be especially valuable for future development of 

adjoint-informed adaptive discretization p- and/or h-

refinement schemes for such CEM techniques, as well as for 

adjoint-assisted CEM procedures applied to large-scale 

optimization problems, Monte Carlo simulations, RCS 

computation, and RF design problems among other uses.  
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