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Abstract—We present the application of adjoint analysis to
3-D finite element method scattering problems for a posteriori
error estimation and adaptive refinement. Adjoint-based method-
ologies, though underutilized in computational electromagnetics
(CEM), enable significant improvements for both efficiency and
accuracy. We first formulate the adjoint problem of the 3-D
double-curl wave equation and the error estimates for the con-
struction of novel accelerated adaptive refinement algorithms. We
demonstrate adaptive error control for a customizable quantity
of interest (QoI) resulting in targeted refinement and improved
resource allocation through application of automatic global and
local error tolerance heuristics which accelerate the refinement
process. The proposed refinement algorithms rapidly refine
even extremely coarse initial discretizations to high accuracy,
eliminating or substantially reducing manual intervention in the
generation of computationally efficient and accurate simulations.
Moreover, comparisons with analytical results validate our ap-
proach to accelerating automatic refinement to fine tolerances.

Index Terms—A posteriori error analysis, adaptive error
control, adaptive mesh refinement, adjoint methods, computa-
tional electromagnetics, error estimation, finite element method,
frequency domain.

I. INTRODUCTION

THE adjoint solution, a generalized Green’s function,
though underutilized in computational electromagnetics

(CEM), offers a wealth of opportunity and advantages for the
development and testing of efficient, accurate, and practical
applications. Analyzing the traditional problem along with
its adjoint (or dual) enables a fundamental revision of the
connection between the quality and outcome of a solution and
the underlying discretization on which it is founded, as well as
the physical parameters of the problem (e.g., the conductivity
or permittivity).

The selection of regions of a discretization for refinement
has traditionally relied on various heuristics. Typical heuris-
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tics rely on classifying the smoothness of the solution in
some norm, or standard residual estimates [1], [2]. Unknowns
are added (or redistributed) according to the chosen criteria
through some adaptive algorithm.

However, these standard approaches often grossly overesti-
mate error with excessively large bounds or may fail to control
the error [3]. In most applications the solution itself is not the
desired computable, but rather some functional of the solution
computed by post-processing: the radar cross section (RCS) or
S-parameters, for instance. Application of the adjoint problem
addresses this drawback. The dual weighted residual (DWR)
expression of the error in a desired quantity of interest (QoI)
permits a detailed inspection of the impact of the discretization
on the error [2]–[5]. By weighting the error residual by the
coefficients from the adjoint solution, the stability properties
of the problem are included, improving the correspondence
between refinement choices and the accuracy of the QoI.

Reducing or eliminating the need for expert user inter-
vention in the creation and refinement of discretizations for
accurate and efficient modeling in CEM provides significant
value for resource and time savings. For iterative design
or optimization procedures, an adjoint informed approach
yields highly targeted information, permitting the tailoring
of the discretization for accuracy and cost minimization by
simultaneously categorizing insufficient and inefficient regions
of a discretization.

In applied mathematics and other computational fields such
as computational fluid dynamics, adjoint analysis has bene-
fited from extensive research. For a comprehensive theory of
adjoint-based error estimation see [2], [6], [7]. For additional
background and applications to specific partial differential
equations, see [3], [8]–[12].

In CEM, on the other hand, adjoint analysis has largely
focused on estimation of gradients and sensitivity analysis built
for optimization in finite-difference time-domain methods, as
in [13]–[21], rather than the error estimation and adaptive
refinement for frequency domain methods of this work.

Previous work in CEM regarding a posteriori error esti-
mation and adaptive refinement as in [22], [23], based on
the element residual method (ERM), and the estimator in
[24] both demonstrate reliable error indicators. However, such
refinement strategies do not involve a targeted QoI or post-
processing of the numerical solution presented in this work,
nor the focus on expediting the refinement process. Notably
in [25], [26], a posteriori error bounds derived by duality
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arguments show adaptive refinement capability, though only
for a specific far-field pattern QoI and with severe limitations
both in the geometric discretization and the field expansion.
This work, in contrast, applies to arbitrary geometries, low-
and high-order finite elements, and applies to arbitrary QoIs
through substitution of additional adjoint excitations, while
also emphasizing the acceleration of the refinement procedure.

Early advancements in goal-oriented adaptivity for CEM,
such as in [27], [28], prioritized geometric refinement for
2-D waveguide problems and computation of S-parameters.
For parallel wire and parallel plate problems, similar duality
arguments to those applied in this paper were used to estimate
the error in electrostatic force and capacitance quantities [29].
However, the formulation provided in [29] does not permit
anisotropy in the domain, while our approach supports full
anisotropy. Furthermore, instead of pure error estimation, we
leverage the dual problem and novel adaptivity procedures to
accelerate automatic refinement of poor quality discretizations.

Additional existing research in adaptive refinement research
for CEM has largely focused on minimizing projection-based
interpolation error for 1-D and 2-D problems. These methods
apply both energy-norm and goal-oriented refinement to iter-
atively increase the resolution of a starting discretization. For
energy-norm based adaptivity, such as in [30], [31], elements
within an arbitrary percentage of the maximum estimated
element error are refined incrementally until a convergence
condition is met between successive iterations. Similar explo-
rations in the analysis of 2-D and 3-D waveguide problems,
which apply this approach of comparing coarse and fine
grids (both geometrically and in field expansion) for energy-
norm refinement, achieve high accuracy from poor starting
discretizations [32], [33]. However, in contrast to the novel
adaptivity proposed in this paper, these methods are limited
to fixed resolution increases which require large iteration
numbers to satisfy convergence conditions for high accu-
racy. Additionally, the projection-based interpolation approach
permits only the adoption of finer resolution from coarse
resolution, whereas our approach enables both increases and
decreases in resolution, providing greater independence from
the starting discretization. Moreover, existing goal-oriented
refinement based on this methodology, while utilizing duality
arguments as in this paper, perform adaptivity as an extension
of the energy-based approach, such as for improving the anal-
ysis of S-parameters [34], [35], 2-D scattering from infinitely
long cylinders and mutual coupling between antennas [36],
or resistivity logging instruments [37], and as a result share
the same difficulties, such as refining to high accuracy in
lower iteration numbers. Notably, the paper [38] demonstrated
goal-orientated refinement for analyzing scattering in cavity
problems, though with limitations to circular boundaries due
to its use of infinite elements for boundary truncation and with
a priori field expansion orders.

Recent explorations in 1-D dielectric slab problems [39],
along with further developments in adjoint-based error esti-
mation [40]–[43] on which this work is based have shown
further potential for adjoint-based methodologies in CEM.

The adaptivity we propose shares the advantages provided
by goal-oriented refinement and duality-based error estimation

as in existing works in CEM and applied mathematics. Our ap-
proach, however, emphasizes the acceleration of the refinement
procedure to enhance the practicality and efficiency of goal-
oriented refinement and reduces the dependence of the number
of iterations required in refinement on the desired accuracy for
refinement to high accuracy in few iterations.

This paper develops a comprehensive foundation for the
practical and effective application of adjoint methods to
adaptive refinement in frequency domain CEM, generalizing
and expanding the work introduced in [40]–[43]. We pro-
vide derivations for the adjoint problem for the 3D double-
curl wave equation and the adjoint-based error estimates.
In addition, we contribute novel refinement heuristics which
leverage the adjoint error contribution estimates—based on the
global error tolerance, and a combined a priori-a posteriori
local error contribution estimator—for efficient, practical, and
readily applicable fully-automatic refinement work which sub-
stantially and intrinsically accelerates the refinement process
while maintaining efficiency with respect to desired error
contribution tolerances, including for extremely coarse initial
discretizations.

The rest of this paper is organized as follows. Section II
describes the theory and derivations for applying the adjoint
methodology to CEM, including derivations for the adjoint
problem and its solution; error estimates based on the DWR;
construction of completely automatic refinement heuristics
which leverage the DWR estimates; and, lastly, an explicit for-
mulation of a customizable far-field QoI. Section III provides
numerical examples, illustrating the DWR error estimates and
applying them to the global and local tolerance refinement
heuristics using the double higher-order finite element method.
The examples demonstrate rapid refinement even for extremely
coarse initial discretizations with relative independence of the
tolerance and number of iterations required.

II. THE ADJOINT: DERIVATIONS AND ESTIMATORS

A. The Adjoint Problem

We first summarize the components of the standard forward
problem. In this case the governing equation for the forward
problem is the double-curl wave equation:

∇× µ−1
r ∇× E− k2

0εrE = 0, (1)

with µr and εr signifying the relative permeability and
permittivity—which in general can be tensors—respectively,
and k0 denoting the free space wave number. Separating the
excitation (Einc) from the response (Esc), we have that

∇×µ−1
r ∇×Esc−k2

0εrE
sc = −∇×µ−1

r ∇×Einc+k2
0εrE

inc,
(2)

which we denote in linear operator form as

LEsc = G. (3)

The domain is truncated by an air layer and a perfectly
matched layer (PML). The PML is a stretched-coordinate
type conformal PML which exhibits improved accuracy and
improved efficiency over standard PML implementations [44].
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The entire domain is then surrounded by perfect electrical con-
ductor (PEC) which provides the Dirichlet boundary condition

n× E = 0 (4)

at the PEC boundary.
The adjoint operator L∗ is defined by the Lagrange identity

[7]:
〈Lu, v〉 = 〈u,L∗v〉, (5)

with the relevant inner-product being the L2 inner-product:

〈u,v〉 =

ˆ
Ω

vHu dΩ =

ˆ
Ω

v∗ · u dΩ, (6)

where Ω denotes the volume of interest.
For simplicity, we write L = L1 −L2, where the operators
L1 and L2 are clear from the derivations shown below. By the
multi-linearity of the inner-product,

〈LEsc, v〉 = 〈L1Esc, v〉 − 〈L2Esc, v〉. (7)

Taking the first term, using standard vector calculus identities
and the divergence theorem, using we have that

(8)

〈L1Esc, v〉 =

˚
Ω

v∗ · (∇× µ−1
r ∇× Esc) dΩ

=

‹
S

(µ−1
r ∇× Esc × v∗) · dS

+

˚
Ω

µ−1
r ∇× Esc · (∇× v∗) dΩ.

However, since‹
S

(µ−1
r ∇×Esc×v∗)· dS =

‹
S

(n×µ−1
r ∇×Esc)·v∗ dS, (9)

where dS = ndS, by (4), the surface integral term in (8) is
zero. Corresponding to (4), we also have the adjoint boundary
condition

n× v∗ = 0. (10)

Repeating the procedure above implies

(11)

˚
Ω

µ−1
r ∇× Esc · (∇× v∗) dΩ

=

‹
S

(Esc × µ−1
r ∇× v∗) · dS

+

˚
Ω

Esc · (∇× µ−1
r ∇× v∗) dΩ,

where the surface integral term reduces to zero analogously to
(8) by the adjoint boundary condition (10).

Hence,

(12)〈L1Esc, v〉 =

˚
Ω

Esc · (∇× µ−1
r ∇× v∗) dΩ.

Then, for the second term in (7),

〈L2Esc, v〉 =

˚
Ω

v∗ · (k2
0εrE

sc) dΩ

=

˚
Ω

Esc · (k2
0εrv

∗) dΩ

(13)

Finally, by combining (12) and (13) as in (7), we find that the
adjoint operator satisfies

(14)L∗v = ∇× (µ−1
r )∗∇× v− k2

0ε
∗
rv.

The adjoint operator therefore has the form of the forward
operator, with the complex conjugate of the model parameters.
(14) generalizes to tensor materials by exchanging the complex
conjugate for the conjugate transpose.

Note that due to the linearity of the forward operator, the
adjoint problem can be solved independently; this is not the
case for non-linear operators [7].

All that remains is to choose a suitable adjoint problem
which corresponds to the desired QoI. We have, for example,
a collection of functionals which we desire to compute from
the solution to the forward problem. In this paper we concern
ourselves with examining scattered electric field quantities,
though the procedure extends naturally to other QoIs.

In general, we have that for some functional J and forward
solution Esc of LEsc = G,

J [Esc] = QoI, (15)

with J restricted to the set of linear functionals of Esc. For
non-linear J , a linearized form can be substituted in (15).

By the Riesz representation theorem [51], there exists p
such that for all Esc

J [Esc] = 〈Esc, p〉, (16)

which determines our choice for the adjoint excitation:

L∗v = p. (17)

Constructing the adjoint solution for any number of QoIs
simply requires solving the problem with new right-hand sides
corresponding to new adjoint data.

Note, however, constructing the excitation for the Galerkin
solution of the adjoint problem—rather than requiring an
explicit separation of p from the QoI expression—entails
evaluating the functional J for each component of the basis
of the approximate solution. Hence, for the adjoint problem
we must simply find v ∈ B such that

〈L∗v, y〉 = 〈p, y〉 = J [y] ∀y ∈ B, (18)

where J [y] denotes the complex conjugate of J [y].

B. Error Estimation and Adaptive Refinement

We demonstrate how to produce an error estimate in the
form of the DWR. We denote the error by

e = Esc − πhEsc, (19)

where Esc ∈ B represents the “true” solution, and πhEsc ∈
πhB the Galerkin approximate solution, with B and πhB
denoting the bases for the two solutions, respectively. The
corresponding error in the functional is

J [e] = J [Esc]− J [πhEsc], (20)

by linearity of J .
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By (16), we can rewrite (20) as

(21)
J [e] = 〈e, p〉

= 〈Le, v〉
= 〈R, v〉,

where R = Le denotes the residual. Thus, the rationale for
referring to (21) as the dual-weighted residual is now self-
evident.

By Galerkin orthogonality, the error is orthogonal to the
span of πhB. Hence, we can remove the components of
the approximate adjoint solution πhv from the “true” adjoint
solution v. For simplicity, from (12) and (13) we have the
symmetric form of 〈LEsc, v〉, where

(22)
〈LEsc, v〉 =

˚
Ω

µ−1
r ∇× Esc · (∇× v∗) dΩ

−
˚

Ω

v∗ · (k2
0εrE

sc) dΩ,

which we denote by A(Esc, v), and therefore

(23)
〈Le, v〉 = 〈R, v〉

= A(e, v− πhv)

= 〈G, v− πhv〉 −A(πhEsc, v− πhv).

Generally, in evaluating the error estimate in the form of
(23) we do not have access to the “true” solutions for the
adjoint problem, so we substitute a higher order approximate
solution for v and neglect any resultant error in the estimate.
Note that utilizing a solution which exists in the same space
πhB renders a useless estimate of zero due to Galerkin
orthogonality. Increasing the order of the field expansion by
one provides excellent refinement information, though other
schemes exist [6].

Note also that the subtraction v − πhv is not explicitly
performed, but rather indicates the exclusion of terms shared
in the higher order and lower order approximations.

The error term (23) is not evaluated globally, but in a
piece-wise fashion, accumulating the appropriate terms per
element, or in other schemes, such as per basis function, or per
direction. The resulting expressions provide greater versatility
for understanding the distribution of local contributions to the
error and optimizing the model discretization. For problems
with solutions or functionals which depend primarily on a
single direction of the electric field in the domain, for example,
automatically targeting and improving resolution specifically
in those regions minimizes potential inefficiencies, such as
unnecessarily increasing the field expansion in less impactful
directions, which adds significant computation time for little
benefit. Note, it is not possible to leverage such information
with a pure local per-element approach to the error estimation.

We have, then, a collection of error contributions for each
element ẽ1, ẽ2, . . . , ẽK , which sum to the total QoI error
estimate J̃ such that

J̃ [e] =
K∑
i=1

ẽi, (24)

where in general ẽi ∈ C, and with which we consider refining
either in global-tolerance (GT) schemes or local-tolerance (LT)
schemes.

We define GT schemes as those that determine the selection
of elements for refinement based on a tolerance on the global
error estimate. In this category of refinement, we refine the
smallest collection of elements c = {ẽl, . . . , ẽj} such that

∑
ẽi∈c
|ẽi|≥ a

K∑
i=1

|ẽi|, 0 < a < 1. (25)

A fixed a provides an intrinsically hierarchical refinement
process, where finer error tolerances include the iteration
procedure of larger tolerances, and therefore the refinement
may be inefficient.

Instead, the fraction a is varied each iteration, with a larger
difference between the current error estimate and the desired
error tolerance driving larger global refinement.

We therefore provide the following metric:

a = 1−

(
T∑K
i=1|ẽi|

)m
, (26)

where T denotes a global error tolerance, and m controls
the aggressiveness of the refinement, with larger values of
m implying more extensive refinement, and correspondingly
higher likelihood of over-saturation for a given QoI, though
with the potential for reduced number of iterations. We further
note that the tolerance T is not a normalized quantity and
therefore an effective choice is dependent on the size of
the QoI. We note, however, that even in the absence of
prior knowledge about the QoI, the initial discretization (even
when very coarse) typically provides an estimate of the QoI
within an order of magnitude of the actual value, enabling
the automatic selection of T based on a predefined relative
tolerance or desired percent error. If necessary, T can also
be tuned during the refinement procedure as the information
available on the magnitude of the QoI improves.

If the global error estimate grossly exceeds that of the
tolerance, (26) implies refining the entire discretization. As
the global error estimate nears the tolerance, however, the
scope of the refinement correspondingly shrinks, helping re-
duce overshoot and over saturation of the discretization. (26)
naturally generalizes to coarsening as well, with a negative
value suggesting a reduction in resolution in an analogous
manner to that of the refinement.

We also consider refinement based on a LT heuristic that
employs an error tolerance on the element contributions of
the error to guide the refinement. Assuming ideal conditions
in the remainder of analyzing the model (i.e., adequate preci-
sion, perfect numerical integration, etc.), the solution and its
accuracy wholly depend on the sufficiency of the discretization
(the size of the elements, and the field expansion). The a priori
element contribution is given by

|ẽi|≈ Chpi+1
i , (27)

where C is some unknown coefficient, hi is the size of the
element (e.g., the diameter of the hexahedron), and pi denotes
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the order of the basis in each element [45]. We desire that the
element contribution falls below some threshold T ,

Chpi+1
i ≤ T. (28)

This a priori error condition, when combined with the DWR
a posteriori error estimate permits another approach to re-
finement. C is found using (27) with the a posteriori error
estimate. With each term known, (27) can be manipulated to
generate, for instance, an update condition on the element size:

h′i = m

(
T

|ẽi|

) 1
pi

hi, (29)

where h′i denotes the updated diameter of the ith element, and
as in the GT refinement heuristic, the quantity m controls
the aggressiveness of the refinement. In such cases where the
scaling of hi is greater than 1.0, then the estimated resolution
is sufficient, and—when possible, either through re-meshing
or manipulating the field expansion in the element—can be
reduced without violating the desired error tolerance. And,
conversely, for scaling of less than 1.0, the resolution ought
to be increased.

Analogously to (29), manipulation of (27) can produce an
explicit p-refinement indicator:

p′i = pi −m(hi) log
T

|ẽi|
, (30)

where p′i denotes the updated field expansion order, and m
tunes the refinement. Specifically, we consider m as a function
of hi. Note, most importantly, that both (29) and (30) inher-
ently provide gradation in the refinement or coarsening; this
enables efficient “jumps” in the discretization resolution, while
also inhibiting overshoots and over-saturation of the model.
The overall goal of such refinement is to reach the desired
tolerance with a minimal number of steps. Additionally, this
approach is conducive to homogenization of error in the
discretization, a necessary ingredient for efficient adaptively
refined meshes [46], where in the ideal case the error density is
constant, as vast differences in error contributions throughout
the domain suggest inefficiencies and insufficiencies.

Moreover, summation of the approximate QoI and the error
estimate improves accuracy (in many cases substantially),
reducing the effective cost of the adjoint solution computation
by providing both an automated refinement heuristic and
simultaneously improving the accuracy of the QoI itself.

C. Deriving an Example QoI

For an illustrative example of a QoI, used in the remainder
of this paper for numerical results, we study the scattered
electric field in the far-field limit corresponding to a direction
of interest which we can then apply towards the accurate
computation of the monostatic or bistatic RCS.

From the Kirchhoff integral,

EscFF =
e−jk0r

4πr

˛
S

[n̂×(∇×Esc)+jk0(n̂×Esc×ir)]ejk0ir·r′ dS,

(31)

where n̂ denotes the surface normal, and ir the scattering
direction, we first extract the distance dependent terms by
removing the factor e−jk0r

4πr from the expression.
Since we require a scalar QoI, we introduce a new vector

w which isolates a component of the scattered field (e.g.,
the z-directed or θ-directed component). Hence, we have the
following QoI constructed from (31):

J [Esc] =

˛
S

w · [n̂×(∇×Esc)+jk0(n̂×Esc× ir)]ejk0ir·r′ dS.

(32)

Note, due to the surface-equivalence principle applied in
(31), the QoI is computed only from field values on the
boundary of the equivalent surface, rather than the fields in
the entire volume, which are treated as non-contributing.

III. NUMERICAL RESULTS

We now demonstrate the utility of the adjoint based a
posteriori error estimation and adaptive error refinement tech-
niques. Since error estimation and adaptive refinement both
benefit naturally from higher-order elements, as p- and the
combined hp-refinement strategies permit exponential rates of
convergence over the algebraic convergence of standard h-
refinement [45], [47]–[49], we demonstrate results using the
double higher-order methodology [50]. The model problem
is a spherical perfect dielectric scatterer of diameter 2λ with
relative permittivity εr = 2.56 surrounded by a layer of air and
with the domain truncated by a layer of PML (both of which
have a thickness of 0.3λ) and a PEC boundary, as described in
Section III. In the following examples the QoI is the scattered
electric field in the direction of the incident plane wave from
(32), with w matching the polarization of the incident wave.

The formulation of the DWR permits convenient collection
of error contributions among different resolutions, as described
in Section III. By attaching, for example, an error contri-
bution to each basis function we can construct a QoI error
contribution “field” which varies throughout the volume of
the model. Fig. 1 illustrates the relative QoI error contribution
field for an extremely poor discretization with uniform field
expansion. As indicated by the concentric circles, based on
this QoI error contribution field plot, the error contribution in
the cross-section is largely constrained to the dielectric sphere,
with significant emphasis in a conical region in the direction
of the far-field QoI.

Now, collecting the error contributions on a per element
level instead reveals a similar concentrated distribution of
error. With the incident plane wave traveling along the x-axis
and polarized in the z-direction, the error contributions are
distributed symmetrically about this axis, as seen in Fig. 2.
Furthermore, the concentration occurs primarily in the region
of initial incidence, and decays fairly rapidly outside this
region, just as predicted from the QoI error contribution field.
This distribution of error contributions, or alternatively, the
suggested dependence of the QoI on this region of the dis-
cretization provides a perfect candidate for targeted, adaptive
refinement, with the ideal result of such refinement being
a small overall error and nearly uniform error contribution
distribution.
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Fig. 1. Planar cut (x-y) of the QoI error contribution field magnitude for an
extremely coarse uniform discretization with the global QoI error estimate
≈ 30. The concentric circles denote the boundaries of the exterior PML,
middle air, and interior dielectric layers.

As derived in Section III, we explore two approaches to
conducting refinement based on the information and utility
provided by the adjoint solution. To leverage higher-order
elements and the improved convergence rates, we investi-
gate application to p-refinement; with an adequate remeshing
routine, the procedure can be repeated identically for h-
refinement, or extended to the combined hp-refinement.

To fully evaluate the two refinement approaches, in each
case the discretizations, consisting of first-order only basis
functions and 256 geometrically second-order elements, start
with poor initial accuracy. Computing the QoI from this initial
discretization to evaluate the RCS produces 40.7% error with
respect to the analytical RCS computed from Mie scattering.

We show first the GT refinement heuristic which leverages
the DWR estimate to refine a percentage of the total global
error estimate as in (26) with m = 0.7, to provide a balance
between rapid refinement and minimizing overshoot. Refine-
ment is repeated until a suitable termination condition is met
by increasing the orders of chosen elements by one; in this
case we refine until the estimate of the global error falls below
a threshold T ∈ {1.0, 0.7, 0.4, 0.25, 0.15}.

As seen in Fig. 3, which illustrates the DWR estimates
of the absolute global error, the GT refinement heuristic
requires roughly four iterations per tolerance, excluding the
finest tolerance which took five. While not monotonic in
the estimated error, the adaptive refinement converges fairly
rapidly to the desired tolerance. Note, however, that while not
substantial, the level of overshoot is also not insignificant.

According to the GT refinement procedure the field expan-
sion orders are distributed in their final iterations as in Fig.
4.

Lastly, we demonstrate the effectiveness of the LT re-
finement scheme by combining the a priori error estimate
with the a posteriori estimate to guide the refinement as in
(28), and (30) with m(hi) = hi. While the discretizations
as above begins with uniformly first order basis functions,

Fig. 2. Spatial distribution of the per element QoI error contribution estimates
for the same discretization as in Fig. 1 for 2-D and 3-D perspectives.

this heuristic for refinement simultaneously coarsens when
possible and profitable, a potentially significant advantage over
other strategies.

Note that in this procedure, we specify a per element
error tolerance T as opposed to a tolerance on the global
error, and refinement is conducted such that this tolerance
is met as exactly as possible, and in the fewest number of
iterations to reduce the computational impact of the interme-
diate refinement procedure. As a demonstration, we include
results for five tolerances: 0.05, 0.03, 0.01, 0.005, 0.003. Each
tolerance begins from the same starting discretization from the
GT heuristic case. Fig. 5 illustrates the effectiveness of this
refinement heuristic. In most cases, only three iterations are
required to reach the desired tolerance; in two cases, one ad-
ditional iteration is needed, but makes only slight adjustments
to the distribution of unknowns. This relative independence of
the number of iterations required from the desired tolerance
implies the efficiency of the underlying refinement method
based on the combination of the a priori and a posteriori error
estimates. The first two iterations modify the discretization
drastically, closely reaching the desired tolerance, while the
third, and potentially fourth iterations incur minor adjustments
to reach the desired tolerance without vast overshoots. As such,
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Fig. 3. Global QoI error contribution estimates per iteration for various
tolerances with the GT refinement heuristic.

Fig. 4. Final distribution of field expansion orders for various per element
error contribution tolerances with the GT refinement heuristic.

when memory constraints permit, it is advisable to store the
matrix in the intermediate stages to substantially reduce the
computational expense of this refinement heuristic in particular
as the final iterations target only a handful of elements.

While not a constraint on the refinement procedure, the
DWR expression of the absolute global QoI error at each
iteration shows similar behavior, as seen in Fig. 6. Finer
per element error contribution tolerances rapidly decrease the
overall error contribution estimate.

With these electric field QoI’s computed at the desired
tolerances, we compare the approximate monostatic RCS to
that computed by Mie scattering [52]. The results in Fig. 7,
computed for the final iteration of each tolerance in Figs. 5
and 6, show a rapid decrease in the percent error with respect
to the analytical solution. Given that the initial accuracy for
each tolerance is extremely poor, this further illustrates the
effectiveness of the refinement heuristic to tailor the accuracy
of the far-field QoI rapidly and without over-saturation.

With the success of the refinement in substantially reduc-
ing the discretization error efficiently, revisiting the spatial

Fig. 5. Maximum per element QoI error contribution estimates per iteration
for various tolerances with the LT refinement heuristic.

Fig. 6. Global QoI error contribution estimates per iteration for various
tolerances with the LT refinement heuristic.

distribution of the QoI error contributions demonstrates the
satisfaction of the second goal of homogenizing the error
contribution distribution and improving the error density, as
seen in Fig. 8. In contrast to the discretization of Fig. 2, as
a result of the LT refinement heuristic, the individual QoI
error contributions are not only substantially smaller, but the
distribution is no longer heavily concentrated, resulting in
a substantially improved error density and a more balanced
mesh.

Fig. 9 summarizes the distribution of field expansion orders
for the tolerances using the LT refinement heuristic. For
the finer tolerances, unknowns are automatically introduced
where necessary. As expected as well, those finer tolerance
attain higher expansion orders at higher rates, while the larger
tolerances maintain even first-order basis functions where
acceptable for the accuracy of the QoI. Note that in each
tolerance, the bulk of the elements cluster around third and
fourth field expansion order just as in the GT refinement
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Fig. 7. Percent error with respect to Mie scattering for the monostatic RCS for
the final iteration of each tolerance in Fig. 5 with the LT refinement heuristic.

Fig. 8. Spatial distribution of the per element QoI error contribution estimates
for the adaptively refined discretization based on the LT heuristic with a
tolerance of 0.03.

heuristic.
Comparing the effectiveness of the GT and the LT heuris-

tics, the LT scheme performs moderately better, distributing
unknowns more effectively and therefore producing more
accurate QoIs for similar cost. The LT heuristic, in addition,
satisfies the tolerance almost exactly.

As seen in Fig. 10, for the final discretizations produced
by the proposed adaptivity with various levels of tolerance,
the LT heuristic exhibits better performance compared to the
GT heuristic for finer tolerances and lower percent error with
respect to Mie scattering. Specifically, the LT heuristic with
the finest tolerance yields an error of 0.49% with 57673
unknowns, while the finest tolerance for the GT heuristic
requires 59070 unknowns for an error of 2.36%. For reference,
uniform (non-adaptive) refinement is included. To achieve sim-
ilar accuracy to the LT heuristic, uniform refinement required
36008 additional unknowns. Overall, in these instances the LT
heuristic allocates computational resources more effectively,
producing higher quality discretizations for fine tolerances,

Fig. 9. Final distribution of field expansion orders for various per element
error contribution tolerances with the LT refinement heuristic.

Fig. 10. Convergence of the LT and GT refinement heuristics compared to
non-adaptive, uniform refinement.

and in fewer iterations, which saves valuable computation time
during the adaptive refinement procedure.

The LT refinement heuristic, then, which leverages both the
a priori and the a posteriori element contributions outperforms
the GT heuristic.

IV. CONCLUSION

We have demonstrated the effectiveness and utility of
adjoint-based methodologies applied to 3-D CEM problems.
Providing explicit expressions and derivations of the adjoint
problem, along with error contribution estimates and auto-
matic refinement heuristics, this study contains a complete
framework to leverage the adjoint solution for highly effective
error estimation metrics and fully automated adaptive mesh
refinement.

We presented two adaptive mesh refinement heuristics—
one based on the global error tolerance, and the other on
local error tolerances—which, when coupled with the adjoint
solution, intelligently refine the model discretization rapidly
and with great accuracy. Even for extremely coarse initial
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discretizations, we have demonstrated the capability to auto-
matically produce highly efficient and highly accurate resource
allocations specifically tailored to a desired quantity of interest.
Although both refinement heuristics perform well, the pre-
sented local error tolerance refinement heuristic outperforms
the global error tolerance heuristic in number of iterations and
accuracy. The local tolerance heuristic is also characterized
by relative independence of the desired tolerance from the
number of iterations and is therefore suitable and practical
for application to automatic refinement to fine tolerances. The
results, in addition, indicate vastly improved error density and
error homogenization, which further illustrates the efficiency
and practicality of the proposed method.

Adjoint-based methodologies, overall, provide significant
value and potential to CEM applications, enabling the abil-
ity to accurately and efficiently refine models and eliminate
discretization error fully automatically. Future works will
present the utilization of adjoints for applications in sensitivity
analysis, uncertainty quantification, and optimization.
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[42] B. M. Notaroš, J. Harmon, C. Key, D. Estep, and T. Butler, “Error
estimation and uncertainty quantification based on adjoint methods in
computational electromagnetics,” in 2019 IEEE International Sympo-
sium on Antennas and Propagation and USNC-URSI Radio Science
Meeting, July 2019, pp. 221–222.
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