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Abstract—A numerical method is presented for the analysis
and design of a wide variety of electromagnetic (EM) structures
consisting of dielectric and conducting parts of arbitrary shapes.
The method is based on the integral-equation formulation in
frequency domain, and represents a large-domain (high-order
expansion) Galerkin-type version of the method of moments
(MoM). The method is formulated in two versions concerning
the type of the equivalence (volume and surface) utilized in the
treatment of the dielectric parts of the structure. The generality,
versatility, accuracy, and practicality of the method and code are
demonstrated on four very diverse, electrically large, and complex
EM problems. The examples are: an -band reflector antenna
modeled after a bat’s ear, which is about11 3 large at -band, a
broad-band (0.5–4.5 GHz) nested array of crossed loaded dipoles,
an EM system consisting of a dipole antenna and a human body,
and a broad-band (1–5 GHz) microstrip-fed Vivaldi antenna with
a high-permittivity dielectric substrate. The central processing
unit times with a modest personal computer are on the order of
several minutes for a single-frequency application.

Index Terms—Antennas, CAD, method of moments, numerical
analysis.

I. INTRODUCTION

M OST OF THE existing frequency-domain integral-equa-
tion methods for analysis of arbitrary three-dimensional

(3-D)electromagnetic (EM)structuresaresubdomain (small-do-
main)-type methods of moments. More precisely, the structure is
approximated by many electrically small geometrical elements
(on the order of in each dimension), with low-order expan-
sion functions for currents [1]–[7]. In the authors’ opinion, an en-
tire-domainapproachcangreatlyextend theversatility,accuracy,
reliability, and efficiency of moment methods. More precisely,
the entire-domain (large-domain) technique utilizes high-order
expansion functions defined in electrically large geometrical el-
ements (a few wavelengths in each dimension) [8]–[15].

This paper outlines a large-domain method of moments
(MoM) for analysis of structures composed of arbitrarily excited
and loaded dielectric and conducting bodies of arbitrary shapes.
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It is based on a frequency-domain integral-equation formula-
tion. Metallic parts of the structure are treated by introducing
surface electric conduction currents over conducting surfaces
as unknown quantities in the system of coupled integral equa-
tions. The method has two versions concerning the type of the
equivalence invoked in the treatment of the dielectric parts of
the structure. The first version utilizes the volume equivalence
principle to compensate the dielectric materials by the actual
induced volume electric currents in a vacuum. These currents
represent the unknown quantities to be determined in the solution
procedure [9]–[13]. The other version of the method, which is
presented for the first time in this paper, invokes the surface
equivalence principle (generalized Huygens’ principle), and
utilizes as unknown quantities equivalent (artificial) electric
and magnetic surface currents over boundary surfaces between
the homogeneous regions of the structure. Note that for purely
metallic structures in a vacuum, the two versions of the method
are identical. In both versions, the geometry is modeled by
flexible parametric elements with high-order polynomial ex-
pansions for the approximation of currents, enabling electrically
large elements to be used. In this manner the resulting number
of unknowns for a given problem is reduced by an order of
magnitude when compared to small-domain calculation.

This paper is aimed at demonstrating that the MoM, if well
designed and carefully optimized, can be a highly efficient
and reliable tool for the analysis and design of a wide class of
complex 3-D EM structures. The MoM is often thought to be
the method for solving “canonical” problems of subwavelength
size. The large-domain (high-order current approximation)
approach, used surprisingly rarely, promotes the applicability
of the MoM to real-world problems. As examples, this paper
presents: 1) the analysis of an antenna modeled after a bat’s ear,
about in size at 10 GHz; 2) the design of a broad-band
nested loaded dipole array (operating from 0.5 to 4.5 GHz);
3) the analysis of an EM system consisting of a dipole an-
tenna and a human body; and 4) the analysis of a broad-band
microstrip-fed Vivaldi slot with high-permittivity dielectric
substrate operating from 1 to 5 GHz. All the simulations are
performed on a modest PC (Pentium 166 MHz with 16-MB
RAM memory), with CPU times on the order of several minutes
for a single-frequency application.

II. I NTEGRAL EQUATIONS FORCURRENTS

We first describe the theoretical basis of our approach. Con-
sider a structure consisting of arbitrarily shaped metallic and
dielectric parts. Let the structure be situated in a time–harmonic
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incident (impressed) field of complex electric field intensity
and angular frequency. The integral-equation numerical anal-
ysis of such a structure can be performed by employing either
the volume or the surface equivalence principle. The volume
equivalence principle is described first, as it is conceptually
much simpler.

A. Volume Equivalence Principle

The incident field induces conduction and polarization cur-
rents, of density , in the structure volume. According to the
volume equivalence principle, these currents can be considered
to be in a vacuum so that the scattered electric fieldcan be ex-
pressed in terms of these currents through integrals that involve
the free-space Green’s function [9]. For the perfectly conducting
parts of the structure, the volume currents can be replaced by
surface currents of density over the perfect electrical con-
ductor (PEC) surfaces.

Generalized local Ohm’s law and boundary condition on the
PEC give the following relations:

(inside dielectrics) (1)

(over PEC surfaces) (2)

where is the dielectric equivalent complex
conductivity. Note that the dielectrics can be both inhomoge-
neous and lossy. The integral equations (1) and (2), which in-
clude the integral expressions for the scattered field ,
represent a system of coupled simultaneous electric-field inte-
gral equations with and as unknowns.

B. Surface Equivalence Principle

Suppose now that the system under consideration consists of
homogeneous dielectric regions (domains), which generally

include PEC surfaces. One of the domains is the external space
(most often air, but can also be water, real ground, etc.) sur-
rounding the structure. We can use the surface equivalence prin-
ciple (generalized Huygens’ principle) to break the system into

subsystems, each of them representing one of the dielectric
regions, together with the belonging PEC surfaces, with the re-
maining space being filled with the same medium. To achieve
this, a layer of equivalent (artificial) surface electric currents of
density and a layer of equivalent (artificial) surface magnetic
currents of density must be placed on the boundary surface
of each dielectric region, with the objective to produce a zero
total field in the surrounding space. These current densities are
given by

(3)

where is the inward normal on the dielectric surface and
and are the total electric and magnetic fields at the surface.
On the PEC surfaces, only the (actual) surface electric currents
( ) exist. The scattered electric and magnetic fields in the re-
gion of complex permittivity and complex permeability can
be expressed in terms of these currents as follows:

(4)

(5)

(6)

Here, and are the magnetic and electric vector potential,
while and are the electric and magnetic scalar potential,
respectively. is the boundary surface of the region considered,
and is the Green’s function for the unbounded homogeneous
medium of parametersand as follows:

(7)

being the propagation coefficient in the medium andthe
distance of the field point from the source point.

The boundary conditions for the tangential components of the
total electric and magnetic field vectors on the boundary surface
between dielectric domains 1 and 2 yield

(on surface 1–2) (8)

(on surface 1–2) (9)

where we assume that the incident/impressed field is present
only in domain 1. The negative sign on the equivalent currents
in the expressions of the fields in domain 2 is due to the opposite
directions of the normal in (3) when applying the equivalence
principle for the two adjacent domains. On the PEC surfaces,
we reduce boundary conditions (8) and (9) to
[as in (2)] only. Having in mind the integral expressions for the
fields in (4)–(7), (8) and (9) represent a set of coupled electric-
/magnetic-field integral equations for and as unknowns.

Note that for purely metallic structures in air, principles A
and B lead to the same integral equation. Consequently, the cor-
responding two versions of our numerical method are identical
in such cases.

III. GEOMETRICAL MODELING

We approximate all the surfaces (PEC and dielectric surfaces)
by a system of bilinear quadrilaterals. A bilinear quadrilateral
(Fig. 1) is defined uniquely by its four vertices, which can be
positioned arbitrarily in space. The parametric equation of the
quadrilateral in a local (generally nonorthogonal)– coordi-
nate system in the figure is

(10)
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Fig. 1. Bilinear quadrilateral.

Fig. 2. Trilinear hexahedron.

where is the position vector of a quadrilateral point, and
, , , and are constant vectors that can be expressed in

terms of the position vectors of the quadrilateral vertices, ,
, and . The quadrilateral edges and all parametric coordinate

lines are straight, but, in general, its surface is curved (inflexed).
As the basic volume element for the approximation of (inho-

mogeneous) dielectric bodies, we adopt a trilinear hexahedron,
sketched in Fig. 2 [9]. This is a body determined solely by eight
arbitrary points in space, which represent its vertices. The hexa-
hedron edges and all coordinate lines are straight, while its sides
(bilinear quadrilaterals) in the general case are curved.

IV. HIGH-ORDEREXPANSION FUNCTIONS FORCURRENTS

We approximate the -componenent of vector over bi-
linear surfaces by the following two-dimensional (2-D) large-
domain (high-order) polynomial expansion in the coordinates
and :

(11)

Fig. 3. Four characteristic terms of polynomial expansion in (11) defined on
two adjacent bilinear sufraces. FunctionF1 is defined on surface 1 withi = 1

andj = 2, F2 is defined on surface 2 withi = 0 andj = 2, F3 is defined
on surface 1 withi = 2 andj = 2, F4 is defined on surface 2 withi = 3 and
j = 3.F1 andF2 are the same along the common edge, and the corresponding
polynomial coefficients are common for the two surfaces.F3 andF4 are zero
along the common edge.

where is defined in (10), and are the adopted degrees
of the polynomial, and are unknown complex coefficients
to be determined. Similar expressions are used for the-compo-
nent of , as well as for both components of . The expan-
sions satisfy automatically the current-continuity condition for

and/or along an edge shared by (metallic and dielectric)
bilinear surfaces. This improves the solution greatly. More pre-
cisely, the vector basis functions, which include terms
and serve for the automatic adjustment of the condi-
tion at the quadrilateral interconnections (and free edges). Note
that the angle between theand coordinate lines at the inter-
connection generally varies from one bilinear quadrilateral to
another. All other basis functions are zero at the quadrilateral
edges, and serve for improving the current approximation over
the surface. Shown in Fig. 3 are four characteristic polynomial
functions defined on two adjacent bilinear surfaces.

The -, -, and -components of inside trilinear hexahe-
drons (in the volume-equivalence approach) are approximated
by large-domain basis functions, which represent a 3-D gener-
alization of polynomials in (11) [9]. Note that another possi-
bility within the volume-equivalence approach would be to uti-
lize thin-wall volume modeling of dielectric bodies with 2-D
polynomial basis functions in analogy to using rooftop func-
tions defined on the wall cells, as proposed in [4] and [5].

Finally, if the EM structure contains wire-like PEC surfaces,
we model them by straight wire segments, and utilize the cor-
responding one-dimensional (1-D) polynomials for the approx-
imation of the line–current intensity along the segments
[11].

The polynomial degrees , , and can be high,
depending on the electrical size of the element in the, , and

directions, respectively. Of course, the elements cannot be
arbitrarily large. Our strategy is to approximate the structure
geometry by geometrical elements (wire segments, bilinear
quadrilaterals, and trilinear hexahedrons) that are as large as
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possible, and then to subdivide any electrically very large
elements into smaller ones in order to achieve minimal total
number of unknowns for the desired accuracy. It is impossible
to find a unique criterion for the element size for an optimal
solution for all cases. After extensive numerical experiments,
however, we adopted to be the general limit in the code
beyond which the element is subdivided in that particular
dimension. The maximal polynomial degree is adopted to be
eight. Within a multiple-frequency simulation, the discretiza-
tion is automatically repeated for every new frequency.

By adopting in (11) (the first two terms only)
for all bilinear surfaces in the model, we obtain a small-domain
version of our method, with rooftop basis functions [6] defined
on bilinear quadrilaterals that cannot extend more than
in each direction. Similarly, with , our
polynomial volume basis functions degenerate into 3-D rooftop
functions [2] defined in electrically small trilinear hexahedrons.

V. OPTIMIZATION OF FIELD COMPUTATIONS

Although the large-domain MoM is far superior to the small-
domain MoM when comparing the number of unknowns, the
large-domain MoM expressions for the fields entering the inte-
gral equations and the resulting system matrix elements tend to
be quite complicated and their calculation extremely time con-
suming if evaluated directly. We performed, therefore, an ex-
tensive analytical manipulations of these expressions [13] and
careful optimization of the computer code, in order to achieve a
substantial reduction of the CPU time per unknown.

The unknown current-distribution coefficients in the expan-
sions for , , , and are obtained by solving the system of
coupled integral equations by means of the Galerkin testing pro-
cedure [16]. The Galerkin generalized impedances (the system
matrix elements) can be represented as linear combinations of
18 basic types of Galerkin integrals, depending on the domain of
the outer (test) and inner integration, which may be a wire seg-
ment , a bilinear quadrilateral surface , or the volume of
a trilinear hexahedron , and whether the integral kernel con-
tains Green’s function given by (7) (potential integrals) or its
gradient (field integrals). Thus, we have both potential and field
Galerkin integrals of the type and .
They all contain power functions of parametric coordinates, ,
and . For example, the potential integral corresponding to the
test functions defined on theth bilinear surface and the basis
functions on the th bilinear surface is given by

(12)

Rapid and accurate integration methods are developed for
the basic potential and field integrals (inner integration in the
Galerkin integrals) of the , , or type. Briefly, when the

distance of the field point from the source point inand is
relatively small (or zero), the analytical procedure of extracting
the (quasi-)singularity is performed. The procedure for evalu-
ation of volume (quasi-)singular integrals in the case of anal-
ysis of dielectric scatterers is explained in detail in [12]. The
procedure for evaluation of surface integrals consists of analyt-
ical integration of a principal (quasi-)singular part of the inte-
grand over a (generally not rectangular) parallelogram whose
surface is close to the surface of the bilinear quadrilateral near
the singular point, and numerical integration of the rest using
Gauss–Legendre quadrature formulas. The parallelogram that
corresponds to the bilinear quadrilateral defined in (10) is de-
fined by the following parametric equation:

(13)

and being the coordinates of the singular point at the
surface. The extracted terms are proportional to and

, where is the position vector of the
projection of the field point onto the plane of the parallelogram,

for potential integrals, and for field integrals.
Analytical integration for is done as proposed in [17],
and an analogous procedure is developed for .

Finally, the algorithm for efficient nonredundant recursive
construction of the Galerkin impedance matrix is utilized, in
which, for any pair of geometrical elements, first and only once,
the basic Galerkin integrals for all values of the power-functions
indexes is recursively evaluated, and then simultaneously intro-
duced into all impedances containing them. Note that, if the
integrals are considered and both bilinear surfaces are dielectric
ones, there are 16 combinations for the corresponding imped-
ances, relating to the- and -components of the vectors and

over the two surfaces, and in all of them it is necessary to
evaluate three different field terms. For example, the expression
for the electric-field vector contains terms proportional to the
magnetic vector potential, to the gradient of the electric scalar
potential, and to the curl of the electric vector-potential [see (4)].

The resulting system of linear algebraic equations with com-
plex current-distribution polynomial coefficients as unknowns
is solved classically, by LU decomposition Gaussian elimina-
tion. Finally, the following quantities are obtained by post-pro-
cessing of these coefficients:

• current distributions in individual geometrical elements;
• antenna admittance/impedance, reflection coefficient,

voltage standing-wave ratio (VSWR);
• -, -, and -parameters of EM multiport systems;
• electric and magnetic near field;
• losses in lumped and distributed resistive loadings;
• losses and specific absorption rate (SAR) distribution in-

side lossy dielectric bodies;
• overall losses and SAR, antenna radiation efficiency;
• far field, antenna radiation patterns, and scatterer cross

sections.
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Fig. 4. (a) Photograph and (b) simulated geometrical model of bat-ear
antenna. The primary reflector is 165-mm high in thez-direction and 60-mm
wide. The distance between the secondary reflector (tragus), which is 62-mm
high and 21.5-mm wide in its base, and the back of the primary reflector is
23.5 mm (x-direction). The antenna feed is a folded wire monopole. Thez-
andy-directed wire segments are 7.5 –mm long each, and 0.7 mm in diameter.
The distance of the monopole axis from thetragusis 12.5 mm.

VI. PRACTICAL EXAMPLES

A. Bat-Ear Antenna

As the first example, consider a reflector antenna modeled
after the external right-ear geometry of a bat species (Plecotus
auritus), shown in Fig. 4(a). The measured dimensions of the
ear [18] are normalized with respect to the acoustic wavelength
at 50 kHz (navigation acoustic frequency of the bat), and the
antenna (physical model) is fabricated from copper mesh with
dimensions normalized to the EM wavelength at 10 GHz (

cm). The motivation is to benefit from the accuracy and sensi-
tivity of bat biosonar systems in the design of direction-finding
radar. The antenna consists of the primary (larger) and sec-
ondary (smaller) reflector, with a monopole feed, as described
in Fig. 4.

This antenna is complex in shape and is about
large. The simulated geometrical model, shown in Fig. 4(b),

consists of 23 elements (two wire segments and 21 PEC bilinear
surfaces). The number of unknowns for the approximation of
currents in the MoM simulation amounts to 988. The CPU time
required for the analysis, including post processing, is 8 min
on a Pentium 166-MHz personal computer with 16-MB RAM
memory.

Fig. 5 shows the simulated and measured radiation pattern
of the bat-ear antenna in the plane (zenith plane) as a
function of the angle . The pattern is measured in an anechoic

Fig. 5. Simulated and measured radiation pattern of antenna in Fig. 4 in plane
� = 0 .

chamber with a fixed standard-gain horn antenna acting as
a transmitter and the rotating bat-ear antenna as a receiver.
The simulated and measured look (main-beam) directions

and are in excellent agree-
ment, and also in good agreement with acoustic measurements
at 50 kHz ( ) [18].

The convergence analysis was performed for this example.
Three different levels of polynomial approximation of currents
were adopted resulting in a total of 518, 988, and 1737 un-
knowns. The main-beam directions for the three solutions were

, , and , respectively, and slight
differences were noticed only in the low field region.

The small-domain version of the method, with rooftop basis
functions, was also attempted. That was done by reducing the
maximal extension of the computational subsurfaces in the code
to in each dimension. The discretization required the total
of 11 160 unknowns to be determined, and the system matrix
was far too large for the PC used. Note that the number of un-
knowns is for an order of magnitude larger when compared to
the large-domain approach. Although this comparison is valid
only for the particular small-domain solution, it is certainly at
least indicative of numerical advantages of the large-domain
(high-order expansion) MoM over the small-domain (low-order
expansion) MoM.

B. Broad-Band Nested Planar Antenna Sub-Array

As the next example of application of the large-domain MoM
code, consider a nested planar (horizontal) antenna sub-array,
a top view of which is shown in Fig. 6. The motivation for this
design is a multioctave reconfigurable array. Each element is
a printed dipole antenna consisting of 14 PEC strips and 12
lumped line loads. (Note that our method/code includes models
of point, line, and surface generators and loads, as well as
arbitrary distributed loadings.) The dielectric is air. The large
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Fig. 6. Top view of a nested planar horizontal loaded antenna sub-array with
horizontal finite ground planes and vertical two-wire feed lines.

dipoles are 60-cm long, with the strip width increasing linearly
from 1.2 mm at the feed to 12 mm at dipole free ends. The
lumped loads are adopted to be approximately equivalent to the
following continuously distributed resistive loading:

/m

(14)

being the distance from the dipole feed. These frequency-
and position-dependent loads act as switches, which ensure the
electrical length of the antenna be approximately constant in
a broad frequency range. The computed return loss of the an-
tenna (with respect to 600) is greater than 15 dB in a 3 : 1 fre-
quency range (0.5–1.5 GHz). The antenna radiation efficiency
is between 40%–72% in this range.

The basic broad-band elements are crossed for dual po-
larization, and scaled by a factor of three to cover the next
frequency sub-band (1.5–4.5 GHz). Note that the scaling and
nesting of dipoles can successively be continued for further
3 : 1 sub-bands. Each pair of crossed elements has a finite
horizontal square ground plane that is a quarter-wavelength
away at the central frequency of the sub-band. The element
feeds are vertical two-wire transmission lines. Fig. 7 shows
the simulation results for and of the sub-array, where
ports 1 and 3 belong to one of the large and one of the small
elements, respectively. The large ground is considered as
infinite in the simulation, and taken into account by images.
We observe that crossing of the elements of the same size and
nesting of the elements of different sizes, as well as the addition
of the ground planes and feed lines, have no significant effect
on the broad-band circuit properties of the antenna elements in
the corresponding frequency sub-bands. The simulation takes
two minutes of CPU time at the highest frequency with a PC

Fig. 7. Simulateds (large dipoles) ands (small dipoles) of sub-array in
Fig. 6, with and without ground planes, over the two operation sub-bands. The
nominal impedances of all ports are 600
.

Pentium 166 MHz. Note that the large elements arelong at
4.5 GHz.

C. EM Coupling Between a Cellular-Phone Antenna and a
Human Body

The volume-equivalence version of our large-domain method
enables very efficient analysis of high permittivity/conductivity
dielectric scatterers, such as biological tissues [10]. As an ex-
ample, consider an EM system consisting of a person and an
antenna of a cellular phone. The motivation is to analyze the in-
fluence of a person on the antenna properties. The antenna is ap-
proximated by an equivalent symmetrical center-fed wire dipole
without the handset casing (Fig. 8). Let the frequency of the
generator driving the antenna be MHz, the dipole arm
length cm, and the radius of the wire cm.
The adopted model of a person is 178-cm high, and is made of
a homogeneous lossy dielectric of parameters and

S/m, i.e., (taken from [3]). It is
constructed with 12 trilinear hexahedrons, which are mostly of
rectangular shape, as sketched in Fig. 8. As seen, the most at-
tention is paid to modeling the shape of the human head, which
has a dominant role in the EM coupling between the antenna
and the body. Each antenna arm is represented as a single wire
segment with polynomial approximation of current.

Table I shows the impedance of the dipole antenna for dif-
ferent distancesbetween the antenna and the face of the person
( cm). We can see that the dipole, which is almost
resonant if situated in free space, is far from resonance if located
close to the head. The antenna resistance is also greatly changed
due to coupling with the human body. Our simulated results,
which required 3 min of CPU time on a PC Pentium 166 MHz,
are compared to the results obtained by the subdomain MoM
using short wire segments and small dielectric cubes for geo-
metrical modeling and pulse basis functions for the current/field
approximation (the CPU time was 30 min with a CRAY-2 com-
puter) [3]. Satisfactory agreement of the two sets of results can
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TABLE I
IMPEDANCE OF ADIPOLE ANTENNA NEAR A MODEL MAN IN FIG. 8, FOR DIFFERENTDISTANCESd, OBTAINED BY OUR LARGE-DOMAIN METHOD (LDM)

AND THE SUBDOMAIN METHOD [3]

Fig. 8. Analysis of the EM coupling between a cellular-phone antenna and a
human body—simulated geometrical model of the structure.

be observed, keeping in mind that two different geometrical
models of the human body (of the same height) were utilized.

D. Microstrip-Fed Vivaldi Antenna

As a final example, consider a microstrip-fed Vivaldi antenna,
shown in Fig. 9(a). The motivation for this design is the need
for an inexpensive scalable broad-band single element of a very
large radio telescope based on a phased-array approach [19].
The antenna consists of a metalized dielectric substrate with an
exponentially tapered slot in the metallization, and a crossed
strip on the other side of the substrate. The strip and metalliza-
tion form a microstrip line that feeds the slot antenna. The line

Fig. 9. (a) Photograph and (b)–(c) simulated geometrical model (front and
back views) of microstrip-fed Vivaldi antenna. The thickness of the dielectric
substrate is 1.27 mm, and the substrate relative permittivity 10.2. The length
of the tapered slot is 108 mm, while its width varies from 2.4 to 93 mm. The
length and width of the strip are 36 and 1.2 mm, respectively. The distance of
the open-circuited end of the microstrip line from the slot axis is 7.2 mm, as is
the distance of the slot line beginning from the strip axis.

starts with a coaxial connector, and is left open at the end. The
antenna was fabricated on a 50-mil-thick (1.27-mm) high di-
electric-constant Duroid ( ) substrate. All the dimen-
sions in the “feeding area” of the antenna are optimized by our
MoM code, for a given dielectric substrate, to obtain maximal
coupling between the microstrip and slot line in the operating
frequency range. The code is utilized in the surface-equivalence
version, which appears to be more suitable in cases when the
metallic plates and the dielectric surfaces overlap exactly.

This structure is also quite complex and electrically large.
Fig. 9(b) and (c) shows the simulated geometrical model of the
antenna, which is constructed from 31 bilinear surfaces (ten
metallic and 21 dielectric surfaces). The coaxial-line excita-
tion is modeled by a short wire segment at the side of the sub-
strate, with a lumped-point generator at its base. The compu-
tational surface is about (PEC–air interface) plus
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Fig. 10. Simulated and measured reflection coefficient with respect to 50


of antenna in Fig. 9.

(PEC–dielectric interface) plus (dielectric–air inter-
face) large at the highest frequency (5 GHz). The corresponding
total number of unknowns is 1024, and the CPU time 10 min on
a PC Pentium 166 MHz.

Fig. 10 shows the simulated and measured reflection coeffi-
cient (with respect to 50 ) of the Vivaldi antenna in a frequency
range of 1–5 GHz. The measurements were performed with an
HP8510B network analyzer with a thru-reflect line (TRL) cal-
ibration. We observe excellent agreement between the two sets
of results.

VII. CONCLUSIONS

This paper has presented a large-domain Galerkin-type MoM
for the analysis of EM structures composed of arbitrarily ex-
cited and loaded dielectric and conducting bodies of arbitrary
shapes. The method is based on the integral-equation formula-
tion in the frequency domain. It is built and optimized in two
versions concerning the type of the equivalence (volume and
surface) invoked in the treatment of the dielectric parts of the
structure and, consequently, the type of unknown quantities in
the dielectrics. We have carefully chosen diverse and uncon-
ventional examples: the structures are electrically large (many
wavelengths), they are complex in shape, some of them operate
over a wide range of frequencies (several octaves), one example
includes high permittivity/conductivity dielectrics, the dielectric
layers are of finite extent, and the configurations are not rota-
tionally symmetric. In all the examples, excellent modeling ca-
pabilities of bilinear quadrilaterals and trilinear hexahedrons in
conjunction with polynomial current approximation have been
demonstrated. The numerical data agree with experiment and
other theoretical results, and the code has proven to be a useful
and efficient design tool on a modest personal computer.
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[15] B. M. Notarǒs, B. D. Popovic´, and Z. Popovic´ , “EM simulations for
radio and wireless on a PC,” inProc. IEEE Radio Wireless Conf., Denver,
CO, Aug. 1999, pp. 175–178.

[16] R. F. Harrington,Field Computation by Moment Methods. New York:
Macmillan, 1968.

[17] D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M.
Al-Bundak, and C. M. Butler, “Potential integrals for uniform and
linear source distributions on polygonal and polyhedral domains,”
IEEE Trans. Antennas Propagat., vol. AP-32, pp. 276–281, Mar. 1984.

[18] R. B. Coles, A. Guppy, M. E. Anderson, and P. Schlegel, “Frequency
sensitivity and directional hearing in the gleaning bat, Plecotus auritus
(Linnaeus 1758),”J. Comparative Physiol. A, vol. 165, pp. 269–280,
1989.

[19] A. van Ardenne, “The SKA technical R & D program at NFRA,”NFRA
Newslett., no. 15, pp. 1–7, Sept. 1998.
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