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Abstract—An efficient and accurate large-domain higher order
two-dimensional (2-D) Galerkin-type technique based on the
finite-element method (FEM) is proposed for analysis of arbitrary
electromagnetic waveguides. The geometry of a waveguide cross
section is approximated by a mesh of large Lagrangian generalized
curvilinear quadrilateral patches of arbitrary geometrical orders
(large domains). The fields over the elements are approximated
by a set of hierarchical 2-D polynomial curl-conforming vector
basis functions of arbitrarily high field-approximation orders.
When compared to the conventional small-domain 2-D FEM
techniques, the large-domain technique requires considerably
fewer unknowns for the same (or higher) accuracy and offers a
significantly faster convergence when the number of unknowns
is increased. A comparative analysis of solutions using - and

-refinements shows that the -refinement represents a better
choice for higher accuracy with lesser computation cost. In addi-
tion to increasing the field-approximation orders, the geometrical
orders of elements (where needed) should also be set high for
the improved accuracy of the solution without subdividing the
elements. However, in general, an arbitrarily high accuracy
cannot be achieved by performing the -refinement in arbitrarily
coarse meshes alone; instead, a combined -refinement should
be utilized in order to obtain an optimal modeling performance.

Index Terms—Computer-aided analysis, electromagnetic anal-
ysis, finite-element methods (FEMs), waveguides.

I. INTRODUCTION

TWO-DIMENSIONAL (2-D) vector full-wave compu-
tation based on the finite-element method (FEM) is an

important general tool for analysis and design of electromag-
netic waveguides of arbitrary cross sections [1]–[9]. Accurate
and efficient 2-D FEM evaluation of waveguide modes is
important both on its own, for predicting the propagation
characteristics (e.g., cutoff wavenumbers and propagation
constants) of arbitrary waveguides [2]–[9], and as a part of
three-dimensional (3-D) FEM–modal-expansion techniques for
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3-D characterization (e.g., computation of scattering matrices)
of multiport waveguide structures (3-D passive microwave
devices) with arbitrary discontinuities [10], [11].

Although several recent breakthroughs in 2-D FEM modeling
in high-frequency electromagnetics, such as tangential vector
finite elements [2]–[5], [12], covariant-projection elements
[6], and higher order field approximations [6]–[9], have led to
more accurate and efficient FEM solutions of electromagnetic
waveguiding structures, there are still challenges and need
for further improvements in this area. Previous studies show
that higher order basis functions enable more efficient FEM
solutions with better convergence properties as compared to
low-order solutions. However, almost none of the reported
results demonstrate effectiveness of the large-domain (or
entire-domain) modeling of arbitrary 2-D waveguides. The
large-domain approach implies using a relatively small number
of electrically large elements that are on the order of in each
dimension, being the wavelength in the medium, with basis
functions of sufficiently high orders for the approximation of
the fields in the waveguide cross section. The goal is to obtain
an “optimal” numerical model for a waveguide that would
ensure a high level of accuracy of the results with a minimum
number of unknowns and minimum computation cost (CPU
time and memory usage). Instead, practically all existing
2-D FEM techniques for analysis of arbitrary waveguides are
small-domain (subdomain) techniques—the waveguide cross
section is modeled by a large number of electrically very small
finite elements, most commonly triangles, which are on the
order of in each dimension. An exception is found in [9],
where a two-element solution for a rectangular waveguide is
demonstrated.

This paper proposes an efficient and accurate large-domain
higher order finite-element technique for 2-D eigenvalue anal-
ysis of waveguides of arbitrarily shaped cross sections and with
arbitrary inhomogeneous material loads. The surface planar
elements proposed for the approximation of geometry of an
arbitrary waveguide cross section are generalized Lagrangian
curvilinear parametric quadrilaterals of arbitrary geometrical
orders. The 2-D basis functions proposed for the approxima-
tion of fields over the elements are hierarchical polynomial
curl-conforming vector basis functions of arbitrarily high
field-approximation orders. These functions are very suitable
for -refinement, where the field-approximation orders over
elements (where needed) are increased to improve the accu-
racy of the solution without subdividing the elements. The
same quadrilateral (in a generally nonplanar form) and similar
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Fig. 1. 2-D FEM analysis of arbitrary electromagnetic waveguides.
(a) Waveguide geometry. (b) Large-domain 2-D mesh using generalized
curvilinear parametric quadrilaterals of higher geometrical orders.

twofold higher order polynomial basis functions in a diver-
gence-conforming version have been used in a large-domain
method of moments (MoM) technique for solving surface inte-
gral equations [13]. These proposed 2-D finite elements, on the
other side, are developed as a 2-D version of the large-domain
higher order hexahedral finite elements from [11] and [14]. The
current technique is implemented with the electric-field vector
formulation of the 2-D FEM eigenvalue analysis of waveguides
based on transversal and axial (longitudinal) electric-field wave
equations, which are discretized using the weighted residual
(Galerkin) testing procedure.

The performance of the new technique has been tested in four
characteristic examples of 2-D waveguides. The results obtained
by the large-domain FEM are validated and evaluated in com-
parisons with exact solutions (where applicable) and the numer-
ical results obtained by the existing higher order FEM tech-
niques, as well as other results. A detailed numerical study is
presented of convergence properties of large-domain elements,
including a comparative analysis of solutions using -refine-
ment and -refinement (mesh refinement) in terms of accuracy
and computation costs.

II. THEORY AND IMPLEMENTATION

Consider a waveguide with an arbitrarily shaped cross sec-
tion, as shown in Fig. 1(a). Let the -axis of the global Cartesian
coordinate system be in the longitudinal direction of the wave-
guide. In our analysis method, the waveguide cross section is
first tessellated using generalized Lagrangian curvilinear para-
metric quadrilaterals of higher (theoretically arbitrary) geomet-
rical orders, as indicated in Fig. 1(b). A generalized quadrilateral
is analytically described as

(1)

where are the position vectors of the interpolation
nodes. The polynomials are defined as

(2)

Fig. 2. Square-to-generalized quadrilateral mapping defined by (1) and (2).

where represents Lagrange interpolating polynomials
with uniformly spaced interpolation nodes along an interval

, and similarly for . Equations (1) and
(2) define a mapping from a square parent domain to the
generalized quadrilateral, as illustrated in Fig. 2. Although this
mapping, in principle, leads to generalized quadrilaterals with
nonplanar surfaces in 3-D [13], only planar (2-D) curvilinear
quadrilaterals are used in our model (all the interpolation nodes
belong to the waveguide cross section considered, i.e., to the

- plane in Fig. 1). Note that the covariant-projection
element used in [6] can be obtained as a special case of the
generalized quadrilateral in Fig. 2 by letting in
(2).

After the transversal and longitudinal components of the elec-
tric-field intensity vector in the cross section of the waveguide
are transformed as in [8, eqs. (3) and (4)], the following ex-
pansions are used over each of the quadrilateral patches in the
model:

(3)

where are curl-conforming hierarchical-type vector basis
functions defined as

(4)

The -functions are the polynomials defined in [14, eq. (4)],
and are the adopted degrees of the polynomial approxima-
tion for fields, which are entirely independent from the element
geometrical orders and , and , , and are
unknown field-distribution coefficients. The reciprocal unitary
vectors and in (4) are obtained as

(5)

where is the Jacobian of the covariant transformation,
and are local unitary vectors, with given

in (1), and is the unit vector along the global -axis.



ILIĆ et al.: EFFICIENT LARGE-DOMAIN 2-D FEM SOLUTION OF ARBITRARY WAVEGUIDES USING -REFINEMENT 1379

Polynomial degrees and in (3) can be high so that elec-
trically large quadrilateral patches (large domains) that are up to

in each transversal dimension ( in area) can be used,
thus fully exploiting the accuracy, efficiency, and convergence
properties of the higher order FEM. Moreover, basis functions in
(4) are hierarchical functions—each lower order set of functions
is a subset of all higher order sets. With this, different orders of
field approximation, along with different geometrical orders, in
different elements, as well as in different transversal directions
within each element, can be used in a simulation model. Hier-
archical basis functions, on the other hand, generally have poor
orthogonality properties, which results in FEM matrices with
large condition numbers. However, if needed, the orthogonality
and conditioning properties of functions in (4) can be improved
by modifying them as in [15].

A symmetric Galerkin-type weak-form discretization of the
coupled electric-field vector wave equations for the transversal
and longitudinal fields for the general 2-D waveguide problem
in Fig. 1 yields [8]

(6)

where and are the complex relative permittivity and per-
meability, respectively, of the inhomogeneous (possibly lossy)
medium inside the waveguide, is the propagation constant
along the waveguide ( for lossless media), is the sur-
face of a generalized quadrilateral in the model, and stands
for any of the testing (weighting) functions or [testing
functions are the same as basis functions in (4)]. Substituting the
field expansions (3) into (6) leads to a generalized eigensystem,
which is solved using the constrained Lanczos algorithm [8].

III. RESULTS AND DISCUSSION

As the first example, consider an air-filled rectangular wave-
guide. Its cross section, shown in the inset in Fig. 3, is mod-
eled by a single bilinear quadrilateral ele-
ment (which, in this case, reduces to a rectangle). Note that this
is literally an entire-domain 2-D FEM model (an entire com-
putational domain is represented by a single finite element).
Fig. 3 shows the relative error for the computed effective rel-
ative dielectric constant , being the free-space
wavenumber, for the dominant mode of the waveguide

plotted against the total number
of FEM unknowns. The results obtained by the current method
are compared with FEM results from [8], where higher order
small-domain triangular elements with orthogonal basis func-
tions are used. For both FEM techniques, the convergence rate is
presented for both - and -refinements. In the current analysis,
the points on the -refinement (or mesh refinement) curve are
obtained using 2, 8, 64, and 256 regularly distributed quadrilat-
eral elements (squares), respectively, with . The
points on the -refinement curve correspond to an entire-domain
model (single quadrilateral element) with being
varied from 1 to 4. It can be concluded based on this figure that

Fig. 3. Relative error in calculating the effective dielectric constant for the
dominant mode of an air-filled rectangular waveguide (a = 16 mm, b =

8 mm) at 20 GHz against the number of unknowns with h- and p-refinement,
respectively. Comparison of the results obtained by the current method and the
higher order small-domain FEM [8].

Fig. 4. Relative error for the effective dielectric constant for the dominant
mode of the rectangular waveguide (see Fig. 3) using the current method against
the number of nonzero matrix elements.

both methods yield results of similar accuracy with -refine-
ment. However, when -refinement is carried out, the large-do-
main approach presented in this paper yields the results of a
considerably superior accuracy-to-number of unknowns ratio,
as compared to the small-domain approach in [8]. In addition,
we note that the results in Fig. 3 are consistent with the theoret-
ical prediction for the convergence rate for FEM regions with
smooth fields [9, eq. (38)], as well as that the -refinement curve
obtained by the current method can actually be considered as an
extension of the series of curves shown in [9, Fig. 4] toward the
left-hand (better efficiency) side of the diagram.

Shown in Figs. 4 and 5 are relative errors for the effective di-
electric constant for the dominant mode of the rectangular wave-
guide using the current method with the - and -refinements
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Fig. 5. Relative error from Fig. 4 plotted against the CPU time.

Fig. 6. Cutoff wavenumber of a double-ridged waveguide (W = 12:7 mm,
H = 10:16 mm, w = 2:54 mm, and h = 2:794 mm) for the second mode.
Comparison of a large-domain solution using a three-element mesh shown in the
inset and p-refinement and an alternative FEM solution with h-refinement [6].
The results from [16] and [17] (indicated on the k -axis) are given as reference
(true) values.

plotted against the total number of nonzero elements in system
matrices and CPU time, respectively. A PC with 3-GHz CPU
and 1 GB of RAM is used for computations in this and all the
following examples. The results demonstrate that, in this case,
it takes much less computational storage and time to obtain a
certain level of accuracy by using the entire-domain model and

-refinement than with the -refinement.
The second example is a double-ridged air-filled waveguide

shown in the inset in Fig. 6. The analysis is performed over a
quarter of the waveguide cross section only by introducing a per-
fect electric conductor (PEC) and perfect magnetic conductor
(PMC) in the symmetry planes. In this example only, the -field
version of the -field formulation that solves for the free-space
wavenumber given in [7, eqs. (6)–(8)] is used. In Fig. 6, the re-
sults for the cutoff wavenumber for the second waveguide
mode obtained using -refinement on a large-domain three-ele-
ment quadrilateral mesh (shown in the inset) are compared with
those obtained by an alternative higher order FEM technique [6]

Fig. 7. Relative error in calculating the effective dielectric constant averaged
for the four dominant modes of an air-filled circular waveguide 2 cm in
diameter at 20 GHz against the number of unknowns with h- and p-refinement,
respectively.

( -field formulation version), where second-order covariant-
projection elements and -refinement are employed. Since there
is no exact (analytical) solution for this geometry, two additional
independent results, from [16] (FEM) and [17] (Ritz–Galerkin
solution to an integral eigenvalue equation), are also included
in this figure, as reference (true) values. We observe from this
figure that the higher order large-domain model with -refine-
ment exhibits much better accuracy and convergence rate (to-
ward the reference values from [16] and [17]) when compared
with the second-order modeling and -refinement from [6].

Next, consider a circular air-filled waveguide. Shown in
Figs. 7–9 are the relative errors of the computed effective
dielectric constant of the waveguide averaged for the four
dominant modes and plotted against the number of FEM un-
knowns, number of nonzero matrix elements, and CPU time,
respectively. The points on the broken line in each of these
figures are obtained by using the meshes with 1, 5, 12, 48,
and 320 elements ( -refinement), respectively, as indicated in
the inset in Fig. 7, and the second-order field-approximation
functions in the single-element model and
first-order field-approximation functions
in all other models. The points on the solid lines in these
figures are obtained by -refining the respective initial models,
i.e., by incrementing both and (in all elements) by
one for each additional point in the graph (the results of the

-refinement of the five-element model are similar to those for
the single-element model and are, therefore, omitted for the
clearness of these figures). In any given mesh shown in Fig. 7, a
layer of quadrilaterals with geometrical orders
is placed along the edge of the waveguide (these elements
are as conformal as possible to the circular boundary), while
bilinear elements are used for modeling of
the interior of the waveguide cross section. It can be observed
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Fig. 8. Relative error from Fig. 7 against the number of nonzero matrix
elements.

Fig. 9. Relative error from Fig. 7 against the CPU time.

from Figs. 7–9 that, in this example, the -refinement repre-
sents a better choice in terms of achieving a certain level of
accuracy with lesser computation cost. For instance, a 0.5% ac-
curacy can be achieved by both the single-element model with

and 320-element model with ,
and the number of unknowns and the number of nonzero matrix
elements are by an order of magnitude smaller in the first case.
However, these figures also show that an arbitrarily high accu-
racy cannot be achieved by performing the -refinement alone;
instead, a combined -refinement should be utilized in order
to obtain an optimal modeling performance. This conclusion
holds generally in a sense that there exists a low-error bound
beyond which a -refinement in arbitrarily coarse meshes does
not improve further the accuracy of the solution and the size of
elements needs to be reduced as well [18].

To investigate the influence of the accuracy of the geomet-
rical approximation of the circular boundary to the overall ac-
curacy of the large-domain modeling of the circular waveguide,
shown in Fig. 10 are two sets of results obtained by -refining of

Fig. 10. Comparison of two large-domain p-refined five-element solutions
for the effective dielectric constant averaged for the four dominant modes of
the circular waveguide in Fig. 7 using second- and fourth-order Lagrangian
geometrical elements, respectively, near the waveguide edge.

two five-element meshes of the waveguide. The geometrical or-
ders of the curvilinear quadrilaterals on the circular boundary
in the two meshes are adopted to be and

, respectively, and the two models, with indi-
cated interpolation nodes of the Lagrangian elements, are shown
in the inset in this figure. The field-approximation orders across
elements are varied from 1 to 10 in both models. As
can be seen from this figure, the convergence rate of the -refine-
ment with the fourth-order Lagrangian elements is maintained
well into the low-error region with the error being by two orders
of magnitude lower than with the second-order curvilinear ele-
ments.

A similar numerical experiment to that in Fig. 10 has been
conducted with entire-domain (single-element) models of the
circular waveguide using the second- and fourth-order geomet-
rical approximations, respectively. In this case, however, no im-
provement is observed when the second-order Lagrangian ele-
ment is substituted by a fourth-order element. Instead, the -re-
finement of the single-element model yields unpredictable os-
cillating errors in the solution. This may be attributed to the fact
that the entire-domain models of the circular waveguide involve
severe distortions of parametric lines and introduce ill-posed,
almost singular, values for the Jacobian in (5). These deviations
from the rectangular shape are especially drastic at element ver-
tices, where the unitary vectors are almost collinear, and are
more pronounced in the fourth-order model. Note that such in-
stability of the results due to the extreme distortion of the ele-
ments is not observed in the 3-D entire-domain case [14], where
a spherical cavity is successfully modeled with both second- and
fourth-order entire-domain (single-element) curvilinear hexa-
hedra.

As the last example, consider two coupled microstrip lines on
a cylindrical substrate shown in the inset in Fig. 11. The compu-
tational domain is halved by introducing a PEC or PMC in the
symmetry plane for the analysis of odd or even modes, respec-
tively. The FEM computation is carried out using a 14-element
higher order mesh consisting of both large and small elements
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Fig. 11. Dispersion curves of two coupled microstrip lines on a cylindrical
substrate, the cross section of which is shown in the inset (a=b = 0:9, c=h =

10, s=h = 1, w=h = 1, h = b � a, and " = 9:6). Comparison of
the large-domain higher order FEM solution using a 14-element quadrilateral
mesh also shown in the inset with designated field-approximation orders along
the element edges (where not shown, the adopted order is two), an alternative
second-order FEM solution with covariant-projection elements [6], and a dyadic
Green’s function Galerkin solution for the unbounded problem [19].

of very different shapes (Fig. 11). The geometrical orders of the
elements are and . The orders of the field-ap-
proximation polynomials along some of the element edges are
shown in this figure; for the edges where the numbers are not
shown, the adopted polynomial orders are . The
FEM domain is closed by introducing a PEC cylinder around
the structure at a distance from the strips that is ten times the
substrate thickness. This model results in a total of 154 or 138
unknowns for the analysis of even or odd modes, respectively,
and requires 0.06 s of CPU time per frequency. Fig. 11 shows
the dispersion curves of the structure. The results obtained by
the current method are compared with the results presented in
[6] (FEM) and [19] (dyadic Green’s function Galerkin solution
for the unbounded problem), and an excellent agreement of the
three sets of results is observed. The FEM results presented in
[6] are obtained using 50 second-order covariant-projection el-
ements for a half of the structure, and the number of unknowns
is not reported.

IV. CONCLUSIONS

This paper has proposed an efficient and accurate large-do-
main higher order Galerkin-type finite-element technique for
2-D analysis of arbitrary electromagnetic waveguides. The ge-
ometry of a waveguide cross section is approximated by a mesh
of generalized Lagrangian curvilinear parametric planar quadri-
laterals of arbitrary geometrical orders. The fields over the ele-
ments are approximated by a set of hierarchical 2-D polyno-
mial curl-conforming vector basis functions of arbitrary field-
approximation orders, and -refinement is used.

The results obtained by the new technique have been val-
idated and evaluated in four characteristic examples of 2-D
waveguides. The examples have demonstrated very effective
large-domain meshes constructed from a very small number
of generalized quadrilateral elements (large domains) with
field approximations of high orders. When compared to the
conventional small-domain 2-D FEM techniques, the presented
large-domain technique requires considerably fewer unknowns
for the same (or higher) accuracy and offers a significantly
faster convergence when the number of unknowns is increased
using -refinement of solutions.

By a comparative analysis of solutions using -refinement
and -refinement (mesh refinement) within the current method,
it has been shown that the -refinement represents a better
choice in terms of achieving a certain level of accuracy with
much lesser computation cost (computational storage and
time). In addition to increasing the field-approximation orders,
the geometrical orders of elements (where needed) should also
be set high for the improved accuracy of the solution without
subdividing the elements. However, in general, an arbitrarily
high accuracy cannot be achieved by performing the -refine-
ment in arbitrarily coarse meshes alone; instead, a combined

-refinement should be utilized in order to obtain an optimal
modeling performance.
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