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Abstract A novel double-higher-order entire-domain volume integral equation (VIE) technique for
efficient analysis of electromagnetic structures with continuously inhomogeneous dielectric materials
is presented. The technique takes advantage of large curved hexahedral discretization elements—enabled by
double-higher-order modeling (higher-order modeling of both the geometry and the current)—in applications
involving highly inhomogeneous dielectric bodies. Lagrange-type modeling of an arbitrary continuous
variation of the equivalent complex permittivity of the dielectric throughout each VIE geometrical element
is implemented, in place of piecewise homogeneous approximatemodels of the inhomogeneous structures. The
technique combines the features of the previous double-higher-order piecewise homogeneous VIE method
and continuously inhomogeneous finite element method (FEM). This appears to be the first implementation
and demonstration of a VIE method with double-higher-order discretization elements and conformal modeling
of inhomogeneous dielectric materials embedded within elements that are also higher (arbitrary) order (with
arbitrary material-representation orders within each curved and large VIE element). The new technique is
validated and evaluated by comparisons with a continuously inhomogeneous double-higher-order FEM
technique, a piecewise homogeneous version of the double-higher-order VIE technique, and a commercial
piecewise homogeneous FEM code. The examples include two real-world applications involving continuously
inhomogeneous permittivity profiles: scattering from an egg-shaped melting hailstone and near-field analysis of
a Luneburg lens, illuminated by a corrugated horn antenna. The results show that the new technique is more
efficient and ensures considerable reductions in the number of unknowns and computational time when
compared to the three alternative approaches.

1. Introduction

Both the finite element method (FEM) [Jin, 2002; Ilić and Notaroš, 2003; Ilić et al., 2009a; Ansari-Oghol-Beig
et al., 2012] and the volume integral equation (VIE) method of moments (MOM) [Schaubert et al., 1984;
Notaroš and Popović, 1998; Sertel and Volakis, 2002; Kobidze and Shanker, 2004; Botha, 2006; Hasanovic
et al., 2007; Järvenpää et al., 2013] for modeling and analysis of electromagnetic (EM) scattering possess
the inherent theoretical ability to directly treat continuously inhomogeneous dielectric materials. They allow
that the dielectric parameters, permittivity (ε), and conductivity (σ), contained in the equivalent complex
permittivity of the dielectric, can be an arbitrary function of spatial coordinates in the FEM or VIE computational
domain, namely, εe(r), with r standing for the position vector of a point in the adopted coordinate system.
Converted to a numerical space, this theoretical ability means that a FEM or VIE technique or code should be able
to actually implement εe(r) as such and enable direct computation on volumetric discretization elements that
include arbitrarily (continuously) inhomogeneous lossy dielectrics throughout individual elements. This is instead
of carrying out FEM/VIE computations on piecewise homogeneous approximate models of the inhomogeneous
structures, with εe(r) replaced by appropriate piecewise constant approximations.

In addition to its theoretical relevance and interest, FEM or VIE numerical modeling with inhomogeneous
volumetric discretization elements implementing εe(r) variations has multiple practical applications in analysis of
devices, systems, and phenomena that include continuously inhomogeneous materials in antennas, propagation,
electronics, optics, bioelectromagnetics, inverse scattering, electromagnetic metamaterials, transformation
electromagnetics/optics, etc., as outlined in Ilić et al. [2009b]. Moreover, if the direct FEM or VIE analysis of large
continuously inhomogeneous regions in the structure is efficient, then one may even take advantage of a
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“reverse” modeling procedure in some applications. Namely, one can approximate a given piecewise
homogeneous structure (e.g., a medium composed of many thin homogeneous layers) by a continuously
inhomogeneous medium (for a layered structure, generate a continuous interpolating εe profile through
discrete values at centers of layers), and reduce the number of unknowns and accelerate the analysis by
simulating the continuous model, in place of the actual structure.

In the FEM context, continuously inhomogeneous volume finite elements have been implemented and
demonstrated in Ilić et al. [2009b]. It has also been discussed that modeling flexibility of continuously
inhomogeneous finite elements can be fully exploited only if they can be made electrically large, which
implies the use of higher-order field expansions within the elements. This is due to the fact that the
elements within a low-order FEM technique must be electrically very small (on the order of a tenth of
the wavelength in each dimension), and subdivision of the structure using such elements results in a
discretization of the permittivity profiles as well, so elements can be treated as homogeneous; i.e., whether
the actual εe(r) function or its constant approximation is implemented throughout an element does not
have much effect on the results. Thus, the treatment of finite elements as inhomogeneous can only be fully
exploited if implemented in higher-order FEM modeling methodology that enables large geometrical
elements (e.g., on the order of a wavelength in each dimension).

The VIE approach has equivalent capabilities for modeling of inhomogeneous dielectric materials as the FEM
but has certain advantages over it; for example, VIE methods do not require additional unknowns associated
with the termination of the computational FEM domain. In the VIE context, the possibility of using geometrical
elements with continuous change of dielectric parameters throughout their volumes has been implicitly or
explicitly stated, and/or the results of direct VIE analysis of continuously inhomogeneous dielectric structures,
without using piecewise homogeneous approximate models, have been reported by Popović and Notaroš
[1995], Kim et al. [2004], Usner et al. [2006], Sheng et al. [2012], Tong [2012], Yang and Tong [2012], Yang et al.
[2013a, 2013b], and Chobanyan et al. [2013]. However, none of the works have provided much details
about continuously inhomogeneous VIE implementations. More importantly, it also appears that there
are no implementations and demonstrations of a higher-order VIE method employing large continuously
inhomogeneous VIE elements, which may be referred to as the entire-domain or large-domain continuously
inhomogeneous VIE analysis. A notable exception is the entire-domain analysis of continuously inhomogeneous
dielectric scatterers in Popović and Notaroš [1995]. However, this method has limited accuracy and
efficiency due to geometrical modeling using parallelepipeds (rectangular bricks), current modeling
using divergence-nonconforming polynomial basis functions, and testing using the point-matching
procedure. Another exception is a double-higher-order inhomogeneous VIE example in Chobanyan et al.
[2013]. However, the results in this example, a continuously inhomogeneous dielectric spherical scatterer, aimed
to show the capability of the proposed VIE technique to directly treat a continuously inhomogeneous dielectric,
are generated in an “ad hoc”manner, with a special point-matching (zeroth-order) modeling of the continuously
varying dielectric profile in spherical coordinates associated with the dielectric sphere, in which coordinates of
the radial variation of dielectric permittivity inside the sphere are described. The ad hocmethod used works only
for this example, and is thus not described in the paper, and no general method for modeling of the continuously
varying dielectric parameters within VIE elements is developed, implemented, or described.

This paper presents a novel double-higher-order entire-domain VIE technique for efficient analysis of EM
structures with continuously inhomogeneous dielectric materials, based on Lagrange-type modeling of
the continuously varying dielectric parameters within VIE elements. The technique uses Lagrange-type
generalized curved parametric hexahedral elements of arbitrary geometrical orders for the approximation
of geometry in conjunction with divergence-conforming hierarchical polynomial vector basis functions of
arbitrary orders for the approximation of currents within the elements. Variations of εe(r) are incorporated by
means of the same Lagrange interpolating scheme used for defining element spatial coordinates. On one side,
the technique represents a continuously inhomogeneous generalization of the double-higher-order (higher-order
modeling of both the geometry and the current) VIE method in Chobanyan et al. [2013]. On the other side, it
represents a VIE version of the continuously inhomogeneous FEM in Ilić et al. [2009b]. Overall, to the best of
our knowledge, this is the first implementation and demonstration of a VIE method with double-higher-order
discretization elements and conformal modeling of inhomogeneous dielectric materials embedded
within elements that are also higher (arbitrary) order (with arbitrary material-representation orders
within each curved and large VIE element). The new technique may thus even be referred to as a
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triple-higher-order method. This paper also provides an elaborate and explicit discussion of continuously
inhomogeneous VIE modeling.

The new technique has been validated and evaluated by comparisons with (i) the continuously inhomogeneous
double-higher-order FEM technique [Ilić et al., 2009b], (ii) a piecewise homogeneous version of the double-
higher-order VIE technique, and (iii) the commercial (piecewise homogeneous FEM) EM software ANSYS
HFSS. The numerical examples demonstrate higher efficiency and considerable reductions in the number
of unknowns and computational time with the new technique when compared to all three approaches
(i)–(iii). The examples include two real-world applications involving continuously inhomogeneous permittivity
profiles: scattering from a realistically shaped melting hailstone and near-field analysis of a Luneburg lens,
illuminated by a corrugated horn antenna.

The paper is organized as follows: section 2 briefly outlines the general theory of a VIE and its double-
higher-order discretization with a Galerkin-type MOM. Section 3 presents the modeling and implementation
details of the proposed Lagrange-type continuous variation of εe(r) within each VIE element. In section 4,
the new technique is validated by various numerical examples.

2. Outline of the Volume Integral Equation Theory and Numerical Discretization

According to Chobanyan et al. [2013], the equation describing the EM problem of an arbitrarily shaped
structure consisting of dielectric materials of the equivalent complex permittivity εe = ε� jσ/ω in a domain
V, excited by a time-harmonic EM field of complex electric field intensity vector Ei and angular frequency ω,
is given by

D
εe

� ω2μ0∫
V

CDgdV � 1
ε0
∫
V

∇′ � CDð Þ � ∇gdV þ ∫
Sd

n � CDð Þ∇gdS
" #

¼ Ei; (1)

where D is the equivalent electric displacement vector, D= εeE, whose normal component is continuous
(n �D1=n �D2) across the surfaces of abrupt discontinuity in εe, Sd. The electric contrast of the dielectric
with respect to free space (background medium) is defined as C= (εe� ε0)/εe, and g is the free-space
Green’s function.

In our discretization of equation (1) [Chobanyan et al., 2013], the computational domain is first geometrically
tessellated using Lagrange-type generalized curved parametric hexahedra of arbitrary geometrical orders
Ku , Kv, and Kw (Ku, Kv, Kw ≥ 1), shown in Figure 1 and analytically described as [Ilić and Notaroš, 2003]

r u; v;wð Þ ¼
XKu

i¼0

XKv

j¼0

XKw

k¼0

rijkL
Ku
i uð ÞLKv

j vð ÞLKw
k wð Þ;

LKu
i uð Þ ¼ ∏

l¼0

l≠ i

Ku u� ul
ui � ul

; �1 ≤ u; v;w ≤ 1;

(2)

where rijk= r(ui, vj,wk) are the position vectors of interpolation nodes and LKu
i represent Lagrange interpolation

polynomials in the u coordinate, with ul being the uniformly spaced interpolating nodes in u defined as
ul= (2l� Ku)/Ku, l=0, 1,…, Ku, and similarly for LKv

j vð Þ and LKw
k wð Þ. Curvilinear hexahedral modeling facilitates

volumetric meshes that can employ very large elements, which is consistent with the double-higher-order
large-domain (entire-domain) VIE paradigm. Tetrahedral elements could be used (with appropriate local
parent coordinate systems) as well but with limited flexibility in terms of large-domain modeling and
generally larger numbers of unknowns when compared to hexahedral large-domain models. A key step in
preprocessing for the analysis is generation of hexahedral meshes of higher (Ku, Kv, and ) orders. Recently,
commercial software meshing tools such as ANSYS ICEM CFD and csimsoft Trelis (formerly CUBIT) became
available, which can automatically generate first- and second-order hexahedral meshes, and these are (Ku, Kv,
and Kw) orders that suffice in most applications. For meshes of geometrical orders higher than two, one can
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use a technique that hierarchically converts a number of elements of geometrical orders K into an element of
orders K+1.

VectorD inside every generalized hexahedron in themodel is then expanded in terms of divergence-conforming
hierarchical polynomial vector basis functions of arbitrary current-approximation orders Nu, Nv, and Nw (Nu, Nv,
Nw≥ 1), as in Chobanyan et al. [2013]. After applying the Galerkin-type testing, we obtain a system of linear
equations in a matrix form, where unknowns are the coefficients in the expansion for D.

3. Proposed Lagrange-Type VIE Modeling of Continuous Permittivity Variation

To implement continuous variations of material parameters, we utilize the already developed Lagrange
interpolating scheme for defining spatial coordinates of an element in equation (2), which can be conveniently
reused to govern the change of the equivalent complex permittivity εe within the hexahedral element, as follows:

εe u; v;wð Þ ¼
XMu

m¼0

XMv

n¼0

XMw

p¼0

εe;mnpL
Mu
m uð ÞLMv

n vð ÞLMw
p wð Þ; �1 ≤ u; v;w ≤ 1 ; (3)

where εe,mnp= εe(um, vn,wp) are the permittivity values at the points defined by (Mu+ 1)(Mv+ 1)(Mw+1)
position vectors of spatial interpolation nodes r(um, vn,wp), with Mu, Mv, and Mw (Mu, Mv , Mw ≥ 1) standing
for arbitrary material-representation polynomial orders within the VIE element in Figure 1, similarly to
Ilić et al. [2009b]. For example, in the case of Mu =Mv=Mw = 1, εe is a trilinear function throughout the
element volume, governed by the given fixed values at eight points—hexahedron vertices. If
Mu =Mv =Mw = 2, then the inputs are values for εe at 27 interpolation nodes, and the corresponding
profiles are triquadratic functions and so on. Geometrical-mapping orders (Ku, Kv, Kw), current-expansion
orders (Nu, Nv, Nw), and material-representation orders (Mu, Mv, Mw) are entirely independent from each
other, and the three sets of parameters of a double-higher-order inhomogeneous model can be
combined independently for the best overall performance of the method. Furthermore, all of the
parameters can be adopted anisotropically in different directions within an element and nonuniformly
from element to element in a model.

Starting with equation (1) and having in mind the general VIE expression for generalized Galerkin MOM
impedances (the system matrix elements) using magnetic vector and electric scalar Lorenz potentials in

Figure 1. Generalized curved parametric hexahedral VIE element defined by equation (2), with a continuously varying
dielectric profile given by equation (3).
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Chobanyan et al. [2013], we derive the following expression for the matrix entry corresponding to the test-
ing functions fm and basis functions fn defined on the mth and nth inhomogeneous double-higher-order
hexahedral VIE elements (Vm and Vn), respectively, in the model

Zmn ¼ ∫
Vm

1
εem

fm � fndVm � ω2μ0 ∫
Vm

fm∫
Vn

fnCngdVndVm

� 1
ε0
∫
Vm

fm∫
Vn

∇′ � Cnfnð Þ � ∇gdVndVm þ ∫
Vm

fm∫
Sn

n � Cnfnð Þ∇gdSndVm

" #

¼ ∫
Vm

1
εem

fm � fndVm � ω2μ0 ∫
Vm

fm∫
Vn

fnCngdVndVm þ 1
ε0
∫
Vm

∇ � fm ∫
Vn

Cn∇ � fngdVndVm

þ 1
ε0
∫
Vm

∇ � fm∫
Vn

fn � ∇CngdVndVm þ 1
ε0
∫
Vm

∇ � fm∫
Sn

Cnfn � ngdVndVm ;

� 1
ε0
∫
Sm

fm � n ∫
Vn

n

Cn∇ � fngdVndSm � 1
ε0
∫
Sm

fm � n ∫
Vn

n

fn � ∇CngdVndSm

� 1
ε0
∫
Sm

fm � n∫
Sn

Cnfn � ndSndSm

(4)

with Sm and Sn being the surfaces of themth and nth elements, respectively, oriented outward. If εem and εen
are constant, all terms including ∇Cn are vanishing, 1/εem and Cn can be taken outside the respective
integrals, and the final expression in equation (4) reduces to its piecewise homogeneous version, with
both elements being filled with homogeneous dielectrics, in Chobanyan et al. [2013]. For continuously
inhomogeneous elements, ∇Cn in the integrals is calculated as

∇Cn ¼ ∂Cn

∂u
∂r
∂u

þ ∂Cn

∂v
∂r
∂v

þ ∂Cn

∂w
∂r
∂w

;
∂Cn

∂u
¼ ∂

∂u
εe � ε0

εe

� �
¼ ε0

ε2e

∂εe
∂u

; (5)

with similar expressions for ∂Cn/∂v and ∂Cn/∂w. With r and εe within each element represented as in
equations (2) and (3), respectively, the calculation of partial derivatives in equation (5) is a matter of simple
analytical differentiation of Lagrange polynomials. The singular integrals in equation (4) are evaluated by a
singularity extraction technique described in Chobanyan et al. [2013], where the technique for generation
of the generalized Galerkin impedances (for homogeneous elements) is presented in detail as well. The
numerical integration is carried out using the Gauss-Legendre integration formula with orders generally
adopted as NGL =N+ 2, where N are the current-approximation orders in the element, which is in
accordance with the guidelines established in Klopf et al. [2012].

4. Numerical Results

All simulations are performed on a PC with Intel® Core™ i7 CPU 960 processor at 3.2 GHz, 24Gb of random

access memory (RAM), and 64 bit Windows 7 operating system. The current version of the presented continu-
ously inhomogeneous double-higher-order VIE technique is a classical MOM code, that is not accelerated in
any way and is not parallelized, with the final matrix equation being solved utilizing a direct solver, based on
lower upper factorization (with full matrix storage). Hence, the computational (CPU) complexities of the
matrix filling and matrix solution are O(N2) and O(N3), respectively, and the memory consumption scales as
O(N2). In all examples, the choice of the current-expansion orders (Nu, Nv, and Nw) is made based on Klopf
et al. [2012].

4.1. Continuously Inhomogeneous Spherical Dielectric Scatterer

As the first example illustrating the efficiency of the proposed technique in modeling of continuously inho-
mogeneous structures, we consider a lossless (σ =0) spherical dielectric (μr = 1) scatterer, of radius a= 10 cm,
situated in free space and illuminated by a uniform plane wave of frequency f= 1.3 GHz, impinging from
θinc = 0° and ϕinc = 0° directions. The relative permittivity of the sphere is a linear function of a radial coordi-
nate r with the coordinate origin coinciding with the center of the sphere, εr(r) = 6� 5r/a, as depicted in the
inset of Figure 2. The sphere is modeled by seven curvilinear hexahedral elements of the second geometrical
order (Ku = Kv = Kw = 2); in specific, the model consists of the central sphere-like hexahedron of radius
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a/20 and six “cushion-like” hexahedra
between the central sphere and the scat-
terer surface. The current-approximation
orders are Nu=Nv=Nw=2 for the small
central element and Nu=Nv=Nw=4
for all the “cushions,” resulting in a total

of NVIE
unkn ¼ 1380 unknowns. The permit-

tivity εe = εrε0 inside the curved elements
is represented as a Lagrange polyno-
mial function of material-representation
orders Mu=Mv=Mw=1.

Validation and evaluation of the con-
tinuously inhomogeneous VIE model is
carried out in comparison with VIE
simulations of piecewise homogeneous
approximate models of the structure
and a continuously inhomogeneous
FEM as a reference solution. Three dif-
ferent piecewise homogeneous models
are constructed for the comparison,
where the inhomogeneous cushion-like
elements are replaced by NL = 2, 4, and
6 layers, respectively, of thin homoge-

neous cushions of geometrical orders Ku= Kv= Kw=2 and current-approximation orders Nu=Nv=Nw=3.

Figure 2 shows the bistatic radar cross section (RCS) of the sphere, normalized to λ20 (λ0 being the free-space
wavelength), in a characteristic plane (ϕ= 90°). It can be observed that with increasing NL, solutions obtained
using the piecewise homogeneous models converge to the results of the continuously inhomogeneous VIE
analysis, as well as that the continuous VIE solution accurately matches the reference continuous FEM solu-
tion [Ilić et al., 2009b], utilizing the same continuously inhomogeneous large curved hexahedral elements,
but with completely different field equations and numerical procedure. In addition, as can be concluded from
Table 1, the continuous VIE approach demonstrates advantages in both the number of unknowns and the
computational time in comparison with the most precise piecewise homogeneous layered VIE model,
with NL = 6.

4.2. Realistic Scattering Modeling of an Egg-Shaped Melting Hailstone

The second example illustrates a real-life application of the technique, where we consider an egg-shaped
melting hailstone with a linear radial variation of the relative equivalent permittivity which changes from
εer = 20.71 � j5.23 (wet hail), at the surface, to εer = 3.14 � j0.004 (dry hail) [Aydin et al., 1997], at the center
of the object, as depicted in the inset of Figure 3. Similarly to the first example, the hailstone is modeled
by only seven inhomogeneous curvilinear hexahedral VIE elements with Ku= Kv= Kw= 2, Nu=Nv=Nw=6,

Mu=Mv=Mw= 2, and NVIE
unkn ¼ 5076 . The computational time is TVIEtotal ¼ TVIEfilling þ TVIEsolving ¼ 1256 sþ 30 s

¼ 1286 s per frequency point, and the RAM consumption is 412.3Mb. Validation of the inhomogeneous
double-higher-order VIE model is carried out in comparison with the solution obtained by the inhomoge-

neous double-higher-order FEM [Ilić et al., 2009b]. The FEM simulation requires NFEM
unkn ¼ 5646 unknowns,

Table 1. Comparison of the Number of Unknowns, Computational Time, and Memory (RAM) Usage for the Continuous
VIE and Layered VIE Solutions in Figure 2

Number of
Unknowns

Matrix Filling
Time (s)

Matrix Solving
Time (s)

RAM
(Mb)

Continuous VIE 1380 138 2 30.5
Layered VIE NL = 2 1215 45 1 23.6
Layered VIE NL = 4 2295 150 5 84.3
Layered VIE NL = 6 3375 315 12 182.3

Figure 2. Normalized bistatic radar cross section (RCS) of an inhomoge-
neous dielectric spherical scatterer (shown in the inset): comparison of
the results obtained by the proposed continuously inhomogeneous double-
higher-order VIE technique, layered VIE solutions on three different piecewise
homogeneous double-higher-order models, and continuously inhomo-
geneous double-higher-order FEM results.
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TFEM = 5086 s of computational time,
and 365.9Mb of RAM. Shown in
Figure 3 is the normalized monostatic
RCS of the hailstone for the wave
incident from the negative z direction,
computed in the frequency range
from 1GHz to 10 GHz, where we
observe an excellent agreement of the
results obtained by the two numerical
methods.

4.3. Near-Field Analysis of a 10
Wavelength Luneburg Lens
Illuminated by a Corrugated
Horn Antenna

As the last example, consider a
Luneburg lens, in the form of a dielec-
tric sphere with relative permittivity
varying radially from 2, at the sphere
center, to 1, at the surface, that is, εr(r)
= 2� (r/R)2, where R is the radius of

the lens. The lens is 10λ0 in diameter and is illuminated by a corrugated horn antenna made of a perfect elec-
tric conductor (PEC), as shown in Figure 4. The lens is modeled by 112 inhomogeneous curvilinear hexahedral
VIE elements with Ku= Kv= Kw=2, Nu=Nv=Nw= 4, and Mu=Mv=Mw= 2, and the corrugated horn antenna
model consists of 124 quadrilateral PEC patches with Ku= Kv=1 and Nu=Nv= 3. In this example, the VIE in
equation (1) for the lens is coupled with the surface integral equation (SIE) for the horn antenna, resulting
in a hybrid VIE-SIE system of integral equations, which are discretized and solved simultaneously,
as described in Chobanyan et al. [2013]. With the use of symmetry (only one fourth of the lens-horn struc-

ture is modeled), the VIE-SIE discretization of the model requires a total of NVIE-SIE
unkn ¼ 24; 501 unknowns;

TVIE-SIEtotal ¼ TVIE-SIEfilling þ TVIE-SIEsolving ¼ 11; 415 s þ3230 s ¼ 14; 645 s of computational time; and 9.6 Gb of RAM.

We validate the VIE-SIE model by demonstrating the lens effect and comparing the near-field results with
those obtained by the commercial FEM EM software ANSYS HFSS. The simulated normalized real part of
the y component of the electric field vector in the xOz plane passing through the lens is shown in

Figure 5. Both simulations, by the VIE-
SIE and HFSS, clearly demonstrate the
effect of the lens while cross-validating
each other (acknowledging the slight
differences in the color coding used in
the two codes and difference in excita-
tion modeling, which in HFSS is a wave
port and in VIE-SIE is a point-delta
generator). In addition, the proposed
continuously inhomogeneous VIE-SIE
technique demonstrates better compu-
tational efficiency in comparison
with the HFSS simulation, which, with
only one fourth of the structure in
Figure 4 modeled using symmetry,
requires 1,052,815 homogeneous tetra-

hedra; 252 triangles; NHFSS
unkn ¼ 6; 678; 731

unknowns; THFSS = 28, 297 s of compu-
tational time (for a single adaptive
pass); and 22.8 Gb of RAM; this is

Figure 4. VIE-SIE analysis of a 10 λ0 radially continuously inhomogeneous
dielectric Luneburg lens illuminated by a corrugated horn PEC antenna.

Figure 3. Normalized monostatic RCS of an egg-shaped continuously
inhomogeneous melting hailstone model (shown in the inset): comparison
of continuously inhomogeneous double-higher-order VIE and FEM solutions.
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approximately 1.93 times slower and
2.48 times more memory consuming
than the VIE-SIE computation.

5. Conclusions

This paper has presented a novel
double-higher-order entire-domain
VIE technique for efficient analysis of
scattering from continuously inhomo-
geneous dielectric bodies. Special
Lagrange-type generalized curved
parametric hexahedra with continuous
variations of dielectric parameters
have been utilized for geometrical
tessellation as part of VIE modeling.
The general expression for computa-
tion of the Galerkin MOM matrix for
inhomogeneous double-higher-order
hexahedral VIE elements has been
derived and implemented. The
technique combines the features of
the previously published double-
higher-order VIE method and the
continuously inhomogeneous FEM. To
the best of our knowledge, this is the
first implementation and demonstra-
tion of continuously inhomogeneous
tessellation elements in a double-
higher-order VIE approach with con-
formal modeling of inhomogeneous
dielectric materials embedded within

elements that are also higher order, with arbitrary material-representation orders within each curved
and large VIE element.

The new technique has been validated and evaluated by comparisons with a continuously inhomogeneous
double-higher-order FEM technique, a piecewise homogeneous version of the double-higher-order VIE tech-
nique, and the commercial piecewise homogeneous FEM code HFSS. The examples have included scattering
from an inhomogeneous sphere and an egg-shaped melting hailstone and near-field analysis of a Luneburg
lens, illuminated by a corrugated horn antenna. The new technique has been found to be more efficient and
to ensure considerable reductions in the number of unknowns and computational time when compared to
the three alternative approaches. In addition, it should be noted that, in general, implementation of εe(r) as a
function of the position in each geometrical element becomes efficient when electrically large elements are
utilized. Therefore, double-higher-order discretization in conjunction with the continuously inhomogeneous
VIE is more practical for application purposes than its low-order counterparts.
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