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Indoor localization is an emerging application domain that promises to enhance the way we navigate in var- 

ious indoor environments, as well as track equipment and people. Wireless signal-based fingerprinting is one 

of the leading approaches for indoor localization. Using ubiquitous Wi-Fi access points and Wi-Fi transceivers 

in smartphones has enabled the possibility of fingerprinting-based localization techniques that are scalable and 

low-cost. But the variety of Wi-Fi hardware modules and software stacks used in today’s smartphones introduce 

errors when using Wi-Fi based fingerprinting approaches across devices, which reduces localization accuracy. We 

propose a framework called SHERPA-HMM that enables efficient porting of indoor localization techniques across 

mobile devices, to maximize accuracy. An in-depth analysis of our framework shows that it can deliver up to 8 ×
more accurate results as compared to state-of-the-art localization techniques for a variety of environments. 
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. Introduction 

The arrival of Global Positioning System (GPS) technology within

martphones has revolutionized the way we navigate in the outdoor

orld. Today, indoor localization technology holds a similar potential to

isrupt the way we navigate within indoor spaces that are unreachable

y GPS. An example scenario is localizing patients, staff, and equipment

n large hospitals and assisted living facilities. Precise location infor-

ation can allow first responders closest to a patient to be notified in

mergencies. Some startups (e.g., Shopkick, Zebra) are also beginning

o provide indoor localization services that can help customers locate

roducts inside a store [1] . 

Unlike GPS for outdoor localization, no standardized solution exists

or indoor localization. Therefore, a myriad of techniques have been de-

eloped that use various sensors and radio frequencies. Some commonly

tilized radio signals are Bluetooth, ZigBee, and Wi-Fi [2] . Among these,

i-Fi based indoor localization has been the most widely researched,

ue to its low setup cost and easy availability. Today, Wi-Fi access points

re deployed in most indoor locales around the world and all smart-

hones support Wi-Fi connectivity. 

Despite the advantages of Wi-Fi based indoor localization, there are

lso some drawbacks. Many prior solutions perform indoor localization

y measuring Wi-Fi Received Signal Strength Indicator (RSSI) values

nd calculating distance from Wi-Fi Access Points (WAPs). These works

ssume that wireless signal strength reduces in a deterministic manner
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s a function of distance from a signal source (i.e., WAP). But Wi-Fi sig-

als suffer from weak wall penetration, multipath fading, and shadow-

ng effects in real-world environments, making it difficult to establish a

irect mathematical relationship between RSSI and distance from WAPs.

hese issues have served as a motivation for using fingerprinting-based

echniques. Fingerprinting is based on the idea that each indoor location

xhibits a unique signature of WAP RSSI values. Due to its independence

rom the RSSI-distance relationship, fingerprinting can overcome some

f the aforementioned drawbacks with Wi-Fi based indoor localization.

Fingerprinting is usually carried out in two phases. In the first phase

called offline or training phase), the RSSI values for visible WAPs are

ollected along indoor paths of interest. The resulting database of values

ay further be used to train models (e.g., machine learning-based) for

ocation estimation. In the second phase (online or testing phase), the

odels are deployed on smartphones and used to predict the location of

he user carrying the smartphone, based on real-time readings of WAP

SSI values on the smartphone. 

A majority of the literature that utilizes fingerprinting employs the

ame smartphone for (offline) data collection and (online) location pre-

iction [ 3–]. This assumes that in a real-world setting, users would have

ccess to the same smartphone as the one used in the offline phase. But

oday’s diverse smartphone market, with various brands and models,

argely invalidates such an assumption. In reality, the smartphone user

ase is a distribution of heterogeneous devices that vary in antenna gain,

i-Fi chipset, OS version, etc. [ 8 , 25–30 ]. 
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Recent work has shown that the perceived Wi-Fi RSSI values for

 given location captured by different smartphones can vary signifi-

antly [9] . This variation degrades the localization accuracy of con-

entional fingerprinting. Therefore, there is a need for portable and

evice heterogeneity-aware fingerprinting techniques. In this paper,

e present a lightweight Wi-Fi RSSI fingerprinting framework for

 martphone He terogeneity R esilient P ort a ble localization with H idden

 arkov M odels ( SHERPA-HMM ) that is portable across smartphones

ith minimal accuracy loss. The novel contributions of our work are: 

• We conduct an in-depth analysis of Wi-Fi fingerprinting across

smartphones to emphasize the importance of device heterogeneity-

resilient indoor localization; 

• We formulate the indoor localization problem as a Hidden Markov

Model (HMM) that utilizes heterogeneity resilient metrics for user

path prediction; 

• We design the SHERPA-HMM framework for portable Wi-Fi

fingerprinting-based indoor localization; SHERPA-HMM employs a

lightweight software-based approach to combine noisy fingerprints

over distinct smartphones and pattern matching/filtering to improve

location accuracy; 

• We evaluate SHERPA-HMM against state-of-the-art localization tech-

niques, across a variety of Android-based smartphones that are used

for indoor localization along paths in real buildings. 

. Background and related work 

Since the establishment of wireless RF signal based indoor local-

zation a few decades ago, a significant level of advancement has

een achieved in this area. In general, most indoor localization tech-

iques fall under three major categories: 1) static propagation model-

ased, 2) triangulation/trilateration-based, and 3) fingerprinting-based.

arly indoor localization solutions used static propagation model-based

echniques that relied on the relationship between distance and Wi-Fi

SSI gain [10] . These techniques only work well in open indoor ar-

as as they do not take into consideration any form of multipath ef-

ects or shadowing due to walls and other indoor obstacles that in-

alidate the direct distance-RSSI relationship. This method also re-

uired the creation of a gain model for each individual Wireless Ac-

ess Point (WAP) or Wi-Fi router, which is a cumbersome undertak-

ng. Triangulation/Trilateration-based methods use geometric proper-

ies such as the distance between multiple APs (Trilateration) and the

martphone [11] or the angles at which signals from two or more WAPs

re received [12] . Such methodologies may be more resilient to smart-

hone heterogeneity but are not resilient to multipath and shadowing

ffects. Some recent work has also investigated multipath effects for tri-

ngulation [13] , but the proposed approach cannot be implemented on

ommodity smartphones, and hence has limited scalability. 

Wi-Fi fingerprinting-based approaches associate several sampled lo-

ations (reference points) with the RSSI measured with respect to mul-

iple WAPs [ 2 –6 ]. These techniques are relatively resilient to multipath

eflections and shadowing as the reference point fingerprint captures

he characteristics of these effects leading to improved indoor localiza-

ion. Fingerprinting techniques use some form of machine learning tech-

iques to associate Wi-Fi RSSI captured in the online phase to the ones

aptured at the reference points in the offline phase. Recent work on

mproving Wi-Fi fingerprinting exploits the increasing computational

apabilities of smartphones. For instance, sophisticated Convolutional

eural Networks (CNNs) have been proposed to improve indoor local-

zation accuracy on smartphones [4] . One of the concerns with utilizing

uch techniques is the vast amounts of training data required by these

odels to achieve high accuracy. This is a challenge as the collection of

ngerprints for training is an expensive manual endeavor and often the

ack of training data leads to poor accuracy. 

To overcome this limitation, researchers often resort to building

ore complex frameworks that utilize hybrid techniques such as com-
ining fingerprinting with dead reckoning [ 32–34 ]. Dead reckoning

efers to the use of inertial sensors and a previous known location to

redict a future location. However, dead reckoning accumulates errors

ver time, and needs to be further augmented via map matching to be

seful. Map matching utilizes compute intensive particle filtering based

pproaches along with the knowledge of known physical features on a

ap to improve localization accuracy [ 35 , 36 ]. These systems assume

hat the location of a user in real time is given by a distribution of

articles. The location of every particle is then individually updated at

very location prediction cycle and interaction of these particles with

nown physical features such as walls is also captured. Such method-

logies often lead to highly compute intensive solutions. Utilizing such

omplex frameworks levy high energy and computational requirements

n resource constrained smartphone platforms, despite their improving

apabilities. In [3] , an energy-efficient hybrid fingerprinting approach

as proposed. However, most prior work, including [3] , is plagued by

he same drawback, i.e., lack of support for smartphone heterogeneity

cross both the offline and online phases. This leads to solutions that

erform poorly in real-world scenarios. 

Coping with device heterogeneity is a significant research challenge

n most sensing domains. The recent improvements in the field of deep

earning have motivated researchers to apply these models to overcome

eterogeneity challenges. For example, the work in [45] suggests using

 probabilistic heterogeneity generator for training DNNs for speech and

ensor sampling applications, whereas the work in [46] extends this idea

o include the use of cycleGANs for alleviating heterogeneity across mi-

rophones. Unfortunately, none of these works can be directly applied

o the domain of fingerprinting-based indoor localization. While these

orks attempt to overcome the device heterogeneity challenge through

robabilistic data augmentation of heterogeneity features by comparing

ignals of two devices, the heterogeneity features of each device could

e unique thereby limiting the scalability of this approach across de-

ices. Further, hyperparameters for GAN based techniques are known

o be difficult to adjust such that they produce meaningful information.

n contrast our work focuses on utilizing global similarities across het-

rogeneous devices and an intelligent combination of optimization tech-

iques to deliver a framework that performs consistently across a verity

f smartphones. 

The most intuitive approach to address device heterogeneity in the

omain of fingerprinting-based indoor localization is to acquire RSSI

alues and location data manually for each new mobile device [14] . This

s unfortunately not very practical. Once RSSI information is collected,

anual calibration can be performed through transformations such as

eighted-least squares optimizations and time-space sampling [ 15 , 16 ].

hese techniques can be aided by crowdsourcing schemes. However,

uch approaches still suffer from accuracy degradation across devices

19] . 

In calibration-free fingerprinting, the fingerprinting data is trans-

ated into a standardized form that is portable across devices [17] .

ne such approach, known as Hyperbolic Location Fingerprint (HLF)

18] uses the ratios of individual WAP RSSI values to form the finger-

rint. But HLF significantly increases the dimensionality of the training

ata in the offline phase. The Signal Strength Difference (SSD) approach

19] reduces dimensionality by taking only independent pairs of WAPs

nto consideration. Improvement in accuracy over this approach through

rocrustes-based shape analysis and uniform scaling of RSSI values was

roposed in [20] . The RSSI values are standardized via a Signal Ten-

ency Index (STI), while maintaining the dimensionality of the training

ata. The STI-based technique was shown to perform better than SSD

nd HLF. However, as STI is used in conjunction with Weighted Extreme

earning Machines (WELMs) for best performance, it is very computa-

ionally expensive. Also, the experiments in [20] are performed with a

imited set of smartphones, in a one-room-environment that is heavily

ontrolled by the authors. An extension of this work, WinIPS [43] , adds

o STI-WELM by collecting more data over time using additionally de-

loyed Wi-Fi APs whose sole purpose is to extract RSSI information from
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Fig. 1. Benchmark paths for indoor localiza- 

tion (with path lengths and WAP density, and 

salient path features). 
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Table 1 

Details of smartphones used in experiments. 

Smartphone Chipset Android version 

OnePlus 3 (OP3) Snapdragon 820 8.0 

LG V20 (LG) Snapdragon 820 7.0 

Moto Z2 (MOTO) Snapdragon 835 8.0 

Samsung S7 (SS7) Snapdragon 820 7.0 

HTC U11 (HTC) Snapdragon 635 8.0 

BLU Vivo 8 (BLU) MediaTech Helio P10 7.0 
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i-Fi packets. The newly collected data is then adapted to maintain re-

iability of the deployed indoor localization framework over time. This

ork not only has all of the limitations of [20] , but it also introduces

ome new concerns. The WinIPS framework comes at a cost of deploy-

ng additional Wi-Fi access points. It improves the resilience to temporal

ariation of the STI-WELM technique overtime, which is not the focus

f our work. The work in [44] is another data adaption technique to

upport heterogenous devices by translating crowdsourced information

f one device into another through multivariate linear regression. This

ork also employs HMMs to improve overall stability of the results. The

ajor drawback of the work in [44] lies in its very limited resolution of

ocalization accuracy, i.e., at the room or section level. 

In contrast, our SHERPA-HMM framework provides a novel and com-

utationally inexpensive approach that is tested for a wider set of envi-

onments and multiple mobile devices in realistic indoor settings. Unlike

ome previous works, it delivers accurate results in the resolution of a

ew meters. 

. Heterogenous fingerprint analysis 

We begin with an analysis of the impact of smartphone heterogene-

ty on a state-of-the-art indoor localization technique: Euclidean-based

NN [3] . To capture the impact of device heterogeneity we observe the

erformance of the KNN technique to localize six users on five bench-

ark paths ( Fig. 1 ) using six distinct devices ( Table 1 ). 

Fig. 2 shows the boxplots (distribution) for localization error (in the

nline/testing phase) across all smartphones and indoor paths, for four
cenarios where the KNN model was trained on four different smart-

hones. The most interesting observation is that, in general, the least

rror is achieved when the device under test is identical in the (offline)

raining and (online) testing phases. For example, the average local-

zation error of KNN remains stable ( < 2 m) when trained and tested

ith the OP3 mobile device on all paths ( Fig. 2 (d)). But this trend does

ot hold when the training device is not the same as the testing de-

ice. For example, training on the LG device leads to severe deteriora-

ion in accuracy in the Engr_Labs path when testing with the OP3, BLU,

nd MOTO smartphones ( Fig. 2 (c)). For the Engr_Labs path in Fig. 2 (a),

he average error can be 6 × between the best-case training-testing sce-

ario (BLU–BLU), and worst-case scenario (BLU–OP3). This suggests that

 fingerprinting-based indoor localization framework can be extremely unre-

iable and unpredictable, due to device heterogeneity. 
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Fig. 2. Error distribution for benchmark paths using KNN [3] . 
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Fig. 3. RSSI values of each WAP for training and testing pairs. Shaded regions 

depict the standard deviation. 

Fig. 4. Probability distribution of the Euclidian distance across consecutive 

pairs of scans using the HTC and BLU smartphones on the Engr_Labs indoor path. 
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The RSSI values for the best and the two poorly performing training-

esting device pairs are shown in Fig. 3 . The solid lines represent the

ean values, whereas the shaded regions represent the standard devi-

tions of RSSI values. From Fig. 3 (a), it can be observed that there is

 significant overlap in the RSSI values for the LG and HTC devices.

his translates into a shorter Euclidian distance and therefore, produces

ood results using KNN. On the other hand, in Fig. 3 (b) we observe al-

ost no overlap in the RSSI fingerprints. Instead, an inconsistent gain

ifference can be observed across the two devices. Further, in Fig. 3 (c),

t can be seen that the BLU device exhibits a significant amount of noise

ue to variation in the WAP RSSI values for consecutive scans, which

an be attributed to its less stable Wi-Fi chipset, compared to the other

obile devices. This leads to severe misprediction when using Euclidian-

ased KNN. An interesting observation that can be made from looking

t Fig. 3 is that the overall shape of the fingerprints is similar, including

n Fig. 3 (c), where the shape is similar to the mean fingerprint for the

LU device. 

From Fig. 3 (c), the greater amount of noise from the BLU device is

pparent as compared to the other devices, such as the HTC. Identifying

nd quantifying such noise when using a device for localization (i.e., in

he online phase, which is distinct from the offline phase where the lo-

alization technique is trained) would allow us to take additional steps

o improve localization accuracy. However, it is difficult to identify if a

evice is capturing noisy fingerprints in the online phase, given a lim-

ted set of fingerprints along a path. One approach to quantifying noisy

eadings could be to check for the Euclidian distance across consecutive

cans in the online phase. Since consecutive online scans are conducted
sing the same device, they should not change significantly over short

istances and be similar in terms of Euclidian distance. 

To test this hypothesis, we walked over the Engr_Labs indoor path

ith the BLU (most noisy fingerprints) and HTC (most stable finger-

rints) smartphones while capturing Wi-Fi fingerprints with consecutive

cans during the walk. Fig. 4 depicts the distribution of the Euclidian

istance between consecutively captured Wi-Fi fingerprints for the BLU

nd HTC devices over the Engr_labs path. From Fig. 4 , we observe that

he consecutive scan distances for the HTC device are distributed over

 very short range, denoting a stable collection of Wi-Fi fingerprints.

owever, the distances for the BLU device are distributed over a much

ider range due to the variation/noise over consecutive Wi-Fi scans.

his approach can be used to identify mobile devices that capture unstable

ngerprints during the online phase. 

The discussion in this section suggests that a portable methodology

hat captures the pattern of similarity across fingerprints from hetero-
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Fig. 5. Reference points represented as states in a Hidden Markov Model with 

given transition probabilities from one state to another. 
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eneous smartphones and is able to overcome the noisy behavior of the

esting devices, in an energy efficient manner, should deliver better ac-

uracy for indoor localization. These observations serve as the moti-

ation for our proposed SHERPA-HMM framework for lightweight and

ortable localization, as discussed in Section 5. The next section pro-

ides a background on HMMs that are used by SHERPA-HMM . 

. Hidden Markov Model (HMM) formulation 

In this section, we discuss the formulation of the indoor localization

rocess as a Hidden Markov Model (HMM). An HMM statistical predic-

ion model is one that estimates the next hidden state given the tran-

ition probability of moving from the current hidden state to the next

idden state and probabilities of observable states [39] . HMMs are par-

icularly renowned for identifying patterns that change with time and

ave applications in the area of handwriting recognition [38] , activity

ecognition [41] , speech synthesis [42] , etc. In this paper, we utilize Wi-

i RSSI pattern similarity as observable (non-hidden) states and predict

he user’s location or path taken by user which are not directly observ-

ble (hidden states). 

As shown in Fig. 5 , we can translate the indoor localization process

nto a Markov process by first assuming that discrete localizable loca-

ions (denoted by L n , L n + 1 , L n + 2 …) on the indoor floor plan are the

tates. As there is no direct way of checking if the predicted position or

tate in the online phase is correct, these states are referred to as hid-

en states. Further, for a given path taken by a user in the online phase,

here may be certain known probabilities of going from one hidden state

o another. From Fig. 5 , we observe that a user is 80% likely to go to

he next state and 20% likely to stay on the same states at any given

ime-step ( S n ). In our case, we assume that a user moving on a path is

qually likely to move in all directions by a finite amount. 
ig. 6. The emission and transition matrices with populated probabilities over variou

ssociated with each observable state and are based on Pearson’s Cross Correlation.

oing from one hidden state to another. 
Fig. 6 represents an example of transition and emission matrices for

 given path that are critical components of our HMM formulation. The

robabilities of transitioning from one state to another are also referred

o as the transition probabilities and are mathematically represented

s a matrix. The transition matrix T r is of size [ L × L ], where L is

umber of discrete hidden states (locations in our case). The transition

atrix shown in Fig. 6 describes one such example that contains a total

f 5 locations or states on a path, thereby producing a matrix of size [5

5]. In Fig. 6 , the current states are listed as rows and the next states

re represented by columns. So, the probabilities of transitioning from

tate 5 (current state) to state 3 or state 4 (next state) would be 0.34 and

.33, respectively, as per the transition matrix. Therefore, the transition

robability of going from any state i to a state j would be given by the

alue of T r [ i , j ] in the transition matrix. 

The observable state information is represented through the emission

atrix and is mathematically expressed by E [ K × S ] (as shown in

ig. 6 ), where K is the number of observable states and S is the number

f subsequent measurements of the observable states (prediction cycles

n our framework). In the context of our work, the observable states are

he “Wi-Fi pattern similarity ” of a scanned unknown Wi-Fi fingerprint

online RSSI vector) with respect to the Wi-Fi fingerprints associated

ith known locations (offline RSSI vectors). As the number of known

ocations is L, the size of the emission matrix in the context of SHERPA-

MM becomes [L × S]. In Fig. 6 , as we have 5 locations on the path,

ach measurement of the subsequent state or prediction cycle contains

 probabilities ( K = L = 5) in the emission matrix, each associated with

eing at a specific state or location. The methodology for computing

he emission probabilities in our work is dependent on Pearson’s Cross

orrelation and is explained in greater detail in the next section. 

An HMM based framework utilizes information from the observable

tates (emission matrix) and known transition probabilities (transition

atrix) to identify the most likely path or series of hidden states. This

s achieved through the Viterbi algorithm [40] . The Viterbi algorithm

dentifies the most likely sequence of hidden states, also known as the

iterbi path, given the probabilities of observed states. 

Here we explain the behavior of the Viterbi algorithm in the context

f our framework through a working example using Fig. 6 . In the initial

tate, we already have the user defined transition matrix of size [5 × 5].

owever, the emission matrix is empty with 5 rows ( K = L = 5) and 0

olumns. In the first prediction cycle ( S = 1), a column with emission
s prediction cycles. The values in the emission matrix represent the probabilities 

 The values in the transition matrix describe the user defined probabilities of 
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robabilities is added to the emission matrix, such that the emission

atrix now has 1 column. The methodology for populating this column

ith probabilities is described in Section 5.4.5. 

For any of the future prediction cycles given by S = n , s.t. n > 1,

e calculate the probabilities associated with all possible sequences of

tates or locations that the user could have visited in the n-1 state tran-

itions. The probability of a sequence of states given by N = {g 1 , g 2 , g 3 
g i … g n } is computed as: 

 ( 𝑁 ) = 

𝑖 = ( 𝑛 −1 ) ∏

𝑖 =1 

(
𝐸 [ 𝑁 [ 𝑖 ] , 𝑖 ] ⋅ 𝐸 [ 𝑁 [ 𝑖 + 1 ] , 𝑖 + 1 ] ⋅ 𝑇 𝑟 [ 𝑖, 𝑖 + 1 ] 

)
(1)

here E [ N [ i ], i ] represents the emission probability of the observed state

t N[i] in the i th prediction cycle, and 𝑇 𝑟 [ 𝑖, 𝑖 + 1 ] represents the transi-

ion probability of moving from state i to i + 1. The sequence of states or

ocations with the highest probability across various prediction cycles is

eported as the path taken by the user, and the last state in the reported

equence is produced as the current location of the user. For example,

s per the emission and transition probabilities given in Fig. 6 , the most

ikely sequence of states or path taken by the user after 3 prediction

ycles would be {1, 2, 2} (these are the states in the emission matrix

ith the highest probabilities for each of the first 3 prediction cycles)

nd after 5 prediction cycles would be {1, 2, 2, 4, 3}. In this manner,

iven the emission and transition matrices, the Viterbi algorithm is able

o search for the most likely path taken by the user based on Eq. (1) .

ore details on the Viterbi algorithm can be found in [40] . 

. SHERPA-HMM framework 

In this section, we first discuss the Wi-Fi fingerprinting phase

Section 5.1) and fingerprint pre-processing (Section 5.2) required by

HERPA-HMM . Section 5.3 describes the offline training phase database

reated in SHERPA-HMM . Section 5.4 describes the software-based

HERPA-HMM framework and its main components that are used in the

nline testing phase: a noise resilient fingerprint sampling, a pattern

atching metric, HMM-based location predictor, and additional opti-

izations. 

.1. Wi-Fi fingerprinting 

We utilize both the 2.4 GHz and 5 GHz Wi-Fi bands to capture the

SSI of a WAP along with its Media Access Control (MAC) address

nd the location (x-y coordinate) at which the sample (fingerprint) was

aken. The MAC address allows us to uniquely identify a WAP. The av-

rage RSSI values for WAPs obtained through multiple scans at each

ocation are stored in a tabular form, such that each row of RSSI values

fingerprint vector) characterizes a unique location. Fingerprints are col-

ected along indoor paths with a smartphone. This step is essential for

ny fingerprinting technique. 

Through SHERPA-HMM we aim deliver a lightweight indoor lo-

alization solution that is as good as, if not better, than the non-

eterogenous case (KNN example in Section 3). Therefore, our goal was

o eliminate the impact of heterogeneity from the indoor localization

ramework. Further, it should be noted that more complex frameworks

ay be able to deliver higher accuracies but that would come at a cost

f longer prediction times that would further negatively impact the real-

ime behavior of the framework. Additionally, the achievable localiza-

ion accuracy is also limited by other factors such as radio signal (Wi-Fi)

ensity, sampling reference point granularity and choice of radio sig-

al in use. The use of freely available Wi-Fi based radio signal in public

uildings limits the achievable accuracy. Higher accuracies could be de-

ivered by deploying custom radio beacons based on UWB or Bluetooth

echnologies, but at a high cost. 

With these considerations as a guide, we decided to establish a re-

listic localization accuracy objective of 2 m which we try to achieve

hrough the fingerprint sampling granularity of 1 m. The 2 m accuracy
bjective is small enough to differentiate the user from being in a corri-

or or a room and large enough to accommodate the saving that can be

chieved through our lightweight framework. 

.2. Fingerprint database pre-processing 

The captured fingerprints can be easily polluted by temporarily vis-

ble untrusted Wi-Fi hotspots. Utilizing such RSSI values in our finger-

rints can significantly reduce the overall reliability and security of

ur localization framework. Therefore, we only capture and maintain

SSI values for trusted MAC addresses that are found to be reliable

AP sources (e.g., by checking for visible WAPs across several days

nd times-of-day). This pre-processing step helps to improve the overall

tability of the SHERPA-HMM framework. 

.3. Sherpa-hmm offline/training phase 

In the training phase, a dataset containing the means of all finger-

rints taken at each sampled reference point (x-y coordinates shown as

lue dots in Fig. 1 ) is established and is stored in a tabular form identi-

al to the fingerprinting dataset. Instead of storing multiple RSSI vector

ngerprints for each reference point location, the mean RSSI dataset rep-

esents a collection of RSSI vectors where the noise in individual sam-

les has been averaged out. The noise in the training phase dataset is

eavily dependent on the smartphone used (as was observed in Fig. 3 ).

herefore, storing the mean of RSSI vectors per reference point is an

ssential step to ensure the portability of the training database across

eterogeneous mobile devices. 

.4. SHERPA-HMM online/testing phase 

.4.1. Motion-aware prediction deferral 

Scanning for Wi-Fi fingerprints is one of the most energy intensive

spect of fingerprinting-based indoor localization frameworks. In the

eal-world, the user may choose to stop and look at the surroundings

hile on a path. Any Wi-Fi scans or location prediction cycles that may

ake place while the user has stopped would be wasted. To avoid such a

cenario, SHERPA-HMM tracks the number of steps taken by the user as

e or she walks along a path. SHERPA-HMM defers scanning for Wi-Fi

ngerprints until it detects that a significant number of steps have been

aken since the last location of the user was predicted. Based on the

xperiments performed in Section 7, we know that the average localiza-

ion error over all paths for our framework is close to 2 m and also the

verage step length of 0.5 m can be assumed based on [21] . Therefore,

HERPA-HMM only scans for Wi-Fi fingerprints once the user has taken

t least four steps since the last location prediction started. We utilized

he default step detector in the Android API to achieve this functionality

22] . 

.4.2. Noise resilient fingerprint sampling 

Noise in the testing phase presents a problem as it leads to degraded

ocalization accuracy. As observed in Fig. 3 (c), scanned Wi-Fi finger-

rints in the testing phase can be significantly impacted by noise. Also,

he extent of noise observed varies from device to device. Therefore, the

hape of a single offline (training) fingerprint, based on only one Wi-Fi

can, may not match that of the online (testing) fingerprint from a noisy

evice. To overcome this challenge, we propose a methodology to re-

uce the impact of observed noise across heterogeneous smartphones

nd establish a prominent pattern match across the training dataset and

he online phase samples. 

As previously addressed, the mean RSSI vectors shown in Fig. 3 are

ore reliable for establishing a pattern match across heterogeneous de-

ices instead of individually scanned RSSI fingerprints. Furthermore,

ecent advances in smartphone technology have led to the development
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f robust Wi-Fi support in smartphones. From our preliminary exper-

ments, we found that some smartphones ( Table 1 ) can deliver up to

 scan in a second. These observations support the idea of executing

ultiple Wi-Fi scans in the online phase and using their mean for each

ocation prediction. 

Our framework opportunistically increases the number of scans re-

uired per prediction from 1 to 3 using the approach described in the

ext section (section 5.4.3). Once multiple consecutive Wi-Fi scans are

ompleted, their mean fingerprint is calculated and used to predict a

ser’s location. The online phase mean fingerprint is compared with the

ean fingerprint vectors from the offline database in the next step which

ses Pearson’s Cross-Correlation ( PCC ; discussed in Section 5.4.4). The

ocation prediction is then made using a lightweight HMM model with

CC-based values embedded in the emission matrix (discussed in Sec-

ion 5.4.5). 

.4.3. Smart noise reduction with boosted scans per prediction 

The key motivation behind considering multiple Wi-Fi scans per lo-

ation prediction is to overcome any unpredictable noise across finger-

rints from heterogeneous devices. However, too many Wi-Fi scans can

ndesirably reduce the battery life of a smartphone. To strike a balance

etween battery life and indoor localization accuracy, SHERPA-HMM

dentifies situations in the localization process where consecutive fin-

erprints are noisy and lead to degraded localization performance. In

uch situations, SHERPA-HMM boosts the number of Wi-Fi scans per

rediction from one to up to three scans. To achieve this, SHERPA-HMM

eeps a track of two quantities: maximum movable distance ( D max ) and

onsecutive scan distance threshold ( CSDT ). 

The maximum distance a user can move within two consecutive pre-

ictions is limited. From preliminary analysis and our previous work

37] , we found that in the situations where noisy fingerprints lead to

ighly erroneous localization predictions, the distance between consec-

tive predictions is over a threshold of distance a human can move in

he allotted time. If the distance between consecutive location predic-

ions is larger than D max , its respective flag is set and SHERPA-HMM

esorts to conducting a second scan. The maximum movable distance

 D max ) threshold is governed by the following equation: 

 𝑚𝑎𝑥 = 

(
𝑇 𝑠𝑐𝑎𝑛 + 𝑇 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 

)
× 𝑆 𝑔𝑎𝑖𝑡 (2) 

here T scan and T predict are the times to complete the consecutive Wi-

i scans and to predict the user’s location respectively, and S gait is the

verage gait speed of the user. In our case, T predict was not significantly

ariable across smartphones and therefore, an upper bound value for

 predict was empirically set to be 0.5 s for the devices shown in Table 1 .

lso, an upper bound gait speed of 2 m/s was used for S gait based on a

arge-scale study performed on human gait speeds [23] . A preliminary

nalysis found that the time taken for 1 Wi-Fi scan (number of default

cans) was heavily dependent on the smartphone being employed and

ven varied for each smartphone itself. Therefore, SHERPA-HMM uti-

izes a timer on the smartphone to record the time taken for consecutive

i-Fi scans at run-time and uses that value as T scan in Eq. (2) . 

The consecutive scan distance threshold ( CSDT ) is the maximum al-

owable noise across consecutive scanned fingerprints above which we

abel the fingerprints as noisy. The value of CSDT is estimated based on

he Euclidian distance between the fingerprints collected by the train-

ng device at each reference point. The assumption is that if the noise

ver consecutive scans is low, consecutive Wi-Fi fingerprints captured

y the same device should be very close in terms of Euclidian distance.

ased on a preliminary analysis performed on the HTC and BLU devices

 Fig. 4 ) the value of CSDT was set to 25 dB. For our setup with the

HERPA-HMM framework, if the Euclidian distance between the first

wo consecutive scans is above CSDT , the noise threshold flag is set,

nd a third Wi-Fi scan is conducted. The mean of all three Wi-Fi scans

s then used to predict the user’s location. However, it is important to

ote that some of the noise resilience comes from the use of HMMs,
herefore noise threshold alone may not guaranty degraded localization

erformance. 

If both the noise threshold flag and the distance threshold flags are

et, then SHERPA-HMM resorts to conducting three scans per location

rediction until at least one of the flags are reset. In contrast to our

revious work SHERPA [37] that utilizes three scans per prediction by

efault, the revised SHERPA-HMM framework only utilizes one scan per

rediction by default, two scans in the relatively uncommon case of

ighly noisy devices, and very rarely boosts up to three scans per pre-

iction. In this manner, our revised framework delivers low-latency pre-

ictions in real-time. It is important to note that the second scan only

ccurs when the last two consecutive location predictions are too far

way from each other, which usually only occurs when cheaper low-

uality instruments are in use. The condition for a third scan is only

et when there is sufficient noise in consecutive scans. The number of

imes a third scan actually got triggered was found to be very limited.

urther, in the rare case that the user moves by a significant amount

y the time the third scan finishes, the resultant location slightly lags

ehind. However, our Viterbi formulation is able to overcome this issue

y gaining confidence from later prediction cycles. 

.4.4. Heterogeneity resilient pattern matching: pcc 

Pearson’s Cross-Correlation ( PCC ) [31] is measure of linear correla-

ion between two vectors. It is a popular metric in the field of signal

rocessing and pattern matching for voice. A 2D version of PCC is also

sed in image processing for template matching, a method used for iden-

ifying any incidences of a pattern or an object within a template image.

CC between a template vector ( T ) and a sample vector ( X ) can be ex-

ressed as: 

 𝐶𝐶 = 

𝑐𝑜𝑣 ( 𝑇 , 𝑋 ) 
𝜎𝑇 𝜎𝑋 

(3)

here, cov(T, X) represents the covariance and 𝜎T and 𝜎X are their re-

pective standard deviations . PCC is limited to a range of − 1 to 1, where

he sign represents negative or positive linear relationship, respectively,

nd the magnitude represents the strength of a linear relationship. For

ur purposes, a positive high value of PCC would suggest a strong simi-

arity between the template (offline database in our case) and the sam-

le (online mean fingerprint in our case). From (3) , we observe that PCC

s directly proportional to covariance (dot product of fingerprints) and

nversely proportion to the standard deviation of sample X and T . There-

ore, a sample exhibiting a high level of covariance with the template

nd a low standard deviation is likely to produce a stronger PCC . 

.4.5. Shape similarity focused Hidden Markov Model 

As discussed in Section 4, there are two inputs to a Hidden Markov

odel: the transition matrix and the emission matrix. The transition

atrix remains the same for a given path, whereas the emission matrix

s updated and fed to the Viterbi algorithm in each prediction cycle. 

The transition matrix describes the probability of moving from one

ocation (hidden state) to the next. We set up the transition matrix such

hat a user at a location can move in any direction by two steps in each

rediction cycle. For example, on a linear path a user at the location

ith label l has equal probability to go to the locations with label: l – 2,

 – 1, l, l + 1, l + 2 (0.2 each) in the next prediction cycle. 

The formulation of the emission matrix is the most critical compo-

ent of the proposed framework. The emission matrix at any stage of the

rediction cycle is given by E [ L × S ], where L is the number of locations

nd S is the number of Wi-Fi scans conducted so far. At each location

rediction cycle once one or more Wi-Fi scans have been completed

as discussed in Section 5.4.3), the PCC for each of the RSSI vectors of

raining data and the online mean RSSI vector is calculated. These PCC

alues now form a column vector of length L . The PCC column vector

s normalized such that the sum of its values is 1. The normalized PCC
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olumn vector is now appended at the end of the emission matrix and

ed to the Viterbi algorithm along with the transition matrix. The Viterbi

lgorithm in turn produces a series of the most likely reference points or

ocations (Viterbi path) that the user has visited in the last S prediction

ycles. The last location of the series of reference points is the predicted

ocation of the user. 

.4.6. Optimizing emission matrix for prediction time 

In the real-world, a user may walk a very long path before reaching

heir final destination. This would result in a very large emission matrix,

s each location prediction event will add one new column to the emis-

ion matrix as discussed in Section 5 and represented in Fig. 6 . This will

mprove the overall localization accuracy of the user at each prediction

ycle, however, it will also slow down the time it takes to produce a

ocation prediction. 

Even though we expect the location prediction of the user to im-

rove as the emission matrix size increases, it may take its toll on bat-

ery life and prediction time. Therefore, to maintain the QoS for the

HERPA-HMM framework, we limit the maximum number of columns

or the emission matrix to a limit called Scan Memory ( S m 

). In the ex-

mple shown in Fig. 6 , we observe that the width (number of columns)

f emission matrix increases by one in every prediction cycle up to the

can Memory limit of three. Once this limit is reached (PC 3), in each

onsecutive prediction cycle, only the portion of emission matrix inside

he scan memory window is passed on to the Viterbi algorithm. This

rocess limits the width of the emission matrix to a constant. Now, as

he prediction cycles progress, the emission probabilities from old pre-

iction cycles are no longer in consideration, allowing SHERPA-HMM

o “forget ” past noisy observations. 

Based on our analysis in Section 7, we set the S m 

to a value of 3. In

his manner, the Viterbi algorithm at max predicts the last 3 locations

he user has been to, based on the last 3 Wi-Fi scan events. This opti-

ization limits the location inference time in a predictable manner and

n-effect optimizes our framework for energy consumption. Further, this

ptimization enables our framework to disregard any errors that may

ave been accumulated due to delays in Wi-Fi scans. 

. Experimental setup 

.1. Heterogeneous devices and fingerprinting 

To investigate the impact of smartphone heterogeneity, we employed

ix different smartphones (shown in Table 1 ). This allows us to explore

he impact of device heterogeneity based on varying chipsets and ven-

ors. We created an Android application that recorded the x-y coordi-

ate from the user and included a scan button. Once the scan button

as pressed, multiple Wi-Fi scans were performed. The RSSI value and

AC address for each WAP were recorded in an SQLite database (Sec-

ion 5.1), and then pre-processed (Section 5.2). 

.2. Indoor paths for localization benchmarking 

We compared the accuracy and stability of SHERPA-HMM and frame-

orks from prior work on five indoor paths in different buildings at

 University campus. These paths are shown in Fig. 1 ; with each fin-

erprinted location or reference point denoted by a blue dot. The path

engths varied between 60 and 80 m, and the number of visible WAPs

long these paths varied from 78 to 218. Each path was selected due to

ts salient features that may impact indoor localization. The Glover build-

ng is one of the oldest buildings on campus and constructed from wood

nd concrete. This path is surrounded by a combination of labs that hold

eavy metallic equipment as well as large classrooms with open areas.

he Behavioral Sciences ( Sciences ) and Library ( Lib_Study ) are relatively

ew buildings on campus that have a mix of metal and wooden struc-

ures with open study areas and bookshelves. The Engr_Office path is
n the second floor of the engineering building that is surrounded by

mall offices. The Engr_Labs path is in the engineering basement and is

urrounded by labs consisting a sizable amount of electronic and me-

hanical equipment. Both engineering paths are in the vicinity of large

uantities of metal and electronics that lead to noisy Wi-Fi fingerprints

nd can hinder indoor localization. A total of 6 users, each carrying a

martphone from a different vendor, walked on each indoor path and

ollected samples (fingerprints) for each location on that path. This set

f data was utilized in the training phase. For the testing/online phase,

ach of these 6 users walked on each of these paths in a random manner,

enerating 10 walks each varying from 20 to 50 m in length. 

.3. Comparison with prior work 

We selected four prior works to compare against SHERPA-HMM .

he first work (LearnLoc/KNN [3] ) is a lightweight non-parametric ap-

roach based on the idea that similar data when observed as points in a

ulti-dimensional space would be clustered together. Thus, given a vec-

or of Wi-Fi fingerprints in the testing phase, KNN identifies the K closest

ngerprints based on Euclidean distance within its training model and

roduces the weighted sum of the coordinates of those K fingerprints.

he second work (Rank Based Fingerprinting (RBF) [24] ) claims that

he rank of WAPs in a vector of ranked WAPs based on RSSI values re-

ains stable across heterogeneous devices. It is functionally similar to

NN with the only difference being that each RSSI fingerprint vector

n the training and testing phases is sorted and re-populated to store

he rank of WAPs instead of raw RSSI values. The third work combines

rocrustes analysis and Weighted Extreme Learning Machines (WELM)

22] to predict the location of a user. Procrustes analysis allows the tech-

ique to scale and superimpose the RSSI fingerprints of heterogeneous

evices and denote the strength of this superimposition as the Signal

endency Index (STI). The STI metric is used to transform the original

SSI fingerprints, and then used to train a WELM model in the online

hase (STI-WELM) with the help of cloud servers. Lastly, we also com-

are SHERPA-HMM , to our previous work SHERPA [37] , that utilizes

 Pearson Correlation-based pattern matching metric to identify loca-

ions that are associated with offline Wi-Fi fingerprints, and employs

ightweight optimizations to deliver high accuracy indoor localization

redictions in real-time. 

. Results 

.1. Sensitivity analysis on scans per prediction 

To quantify the potential improvement of using mean RSSI vectors

n our framework, we conducted a sensitivity analysis to compare the

ccuracy results for SHERPA-HMM using a single RSSI vector and the

ectors formed by considering the mean of 1 to 5 scanned fingerprints.

ig. 7 depicts the overall localization error for various values of scans per

rediction over individual benchmark paths. Even though the overall

rrors for the Engr_Office and Glover paths are significantly lower than

he other paths (discussed further in Section 7.3), there is a similar trend

n reduction of localization error for all paths as the number of scans per

rediction increases. The most significant reduction is observed when

oving from 1 to 2 scans per prediction, whereas there is almost no

eduction as we move from 4 to 5 scans. This observation solidifies our

laim of improvement in accuracy by using more than one scans per

rediction, as was discussed in detail in Section 5.4.2. 

It is important to note that scans per prediction not only impacts the

ocalization accuracy but also the energy consumed per prediction. A

ingle Wi-Fi scan can consume a notable amount of energy (~2400mJ

hen using LG). This motivated us to explore the most suitable value

f maximum scans per prediction for SHERPA-HMM ’s online phase. If

he value is too small, such as the case for the Lib_Study path in Fig. 7 ,

here might not be a significant improvement in localization accuracy.
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Fig. 7. Variation in localization error for different values of scans per prediction 

(x axis) across various path benchmarks. 

Fig. 8. Variation in localization error and Viterbi path search time over scan 

memory for various benchmark paths. 
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owever, if the value is too large, the smartphone may end up consum-

ng a significant amount of energy for an insignificant improvement.

rom Fig. 7 , we observe that for most benchmark paths, a majority of

he improvement is achieved by conducting only 3 consecutive scans.

herefore, the upper limit on scans per prediction is set to 3 for our

ramework. We increase the number of scans per prediction from 1 to 3

n an intelligent manner, as discussed in Section 5.4.3. 

.2. Sensitivity analysis on scan memory 

The scan memory variable discussed in Section 5.4.6 can signifi-

antly impact the performance characteristics of the proposed SHERPA-

MM framework. To quantify this, we perform a sensitivity analysis on

he scan memory variable in an effort strike a balance between predic-

ion latency and localization accuracy. 

Fig. 8 (a) and (b) present the trends on Viterbi path search times

nd average localization error across all devices on various paths in
ur benchmark suite. For this experiment, we analyze the change in

iterbi path search time and localization error when the scan memory

emission matrix width) ranges from 1 to 5. Setting the value of 1 for

can memory translates into only using the latest Wi-Fi scan for loca-

ion prediction without any historical knowledge, whereas a value of 5

uggests that the latest Wi-Fi scan along with previous four Wi-Fi scan

vents were utilized to identify the current location. The results for this

xperiment were averaged out over all the devices. 

From Fig. 8 (a), we observe that the time taken by the Viterbi algo-

ithm to deduce the most likely path taken increases linearly as scan

emory is increased in the range from 1 to 5. This trend is consistent

cross the paths. We observe that the overall search time is generally the

ighest for the Glover path. This is mainly due to the fact that the Glover

ath is the longest benchmark path with 88 reference locations. Each

eference location translates into a unique state in the Hidden Markov

odel. This increases the number of rows in the emission matrix. In

ig. 8 (a), we also observe that the search time grows by 5 × as scan

emory is increased from 1 to 5. 

From Fig. 8 (b), we observe that as we increase scan memory the drop

n localization error is most significant up to the point where scan mem-

ry is 3, beyond which we observe diminishing returns. Another notable

spect is that the most improvement is observed in the Lib_Study path.

his can be attributed to the fact that the Lib_Study has a more com-

lex zig-zag like path. This observation also highlights the prospective

mprovements that can be gained by using HMM models in more com-

lex paths and dynamically increasing scan memory at run-time in an

ntelligent manner. 

From our observations in Fig. 8 (a) and 8(b), we set the value of scan

emory for our HMM formulation to 3. This allows us to minimize the

ocalization error without significantly impacting the overall prediction

ime of our proposed indoor localization framework. It is also important

o note that the value of scan memory that delivers the best accuracy

ighly depends on the state space of the path. The user is responsible

or identifying a good value of state space for each path individually. 

.3. Performance of localization techniques 

Fig. 9 shows the individual plots that represent the contrast in the

ocalization experiences of six users carrying smartphones from distinct

endors. The paths along with the training phase device combinations

ere chosen based on the analysis of the plots in Fig. 2 . We focus on a

ubset of cases that demonstrate significant deterioration in error ( > 2

) for the KNN technique. 

From Fig. 9 (a), it can be observed that HTC is the most stable de-

ice for KNN, i.e., is least affected by heterogeneity, by delivering an

verage accuracy close to 2 m. In all other situations, localization er-

or is heavily impacted by heterogeneity. Overall, in Figs. 9 (a) and (b),

HERPA-HMM can be seen to outperform RBF and STI-WELM with av-

rage accuracies in the range of 1–2 m whenever the localization error

rom KNN is > 2 m. SHERPA-HMM is also better than our SHERPA in

ost cases. We observe that RBF performs the worst when there is a

ignificant amount of metal structures in the environment. This is the

ase for the engineering building paths ( Engr_Labs, Engr_Office ) and the

ath in the Sciences building. The perturbations in the Wi-Fi WAP RSSI

alues due to the metallic surroundings cause the ranks of the WAP RSSI

alues to become highly unstable. We noted that RBF performed better

han KNN for a few walks, but this was averaged out by poor results

rom other iterations of the same walk. 

From Fig. 9 , we also observe that SHERPA-HMM outperforms STI-

ELM in most training-testing device pairs, other than the non-

eterogeneous cases (e.g., LG boxplot in 9(a), BLU boxplot in 9(b), etc.).

HERPA-HMM is able to deliver better performance in most cases as it is

 purely pattern matching approach along a path. STI-WELM identifies

he closest sampled locations from the offline phase using the scaling

nd shape matching based STI metric. The fingerprints of these closest

ocations are then used to train a WELM based neural network in the
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Fig. 9. Localization error for various techniques on benchmark paths across training devices. 
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Fig. 10. Mean indoor location prediction time for SHERPA-HMM and frame- 

works from prior work for the Lib_Study path using the OnePlus3 device. 
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t  

e  
nline phase. The work in [20] (STI-WELM) assumes a constant gain

cross heterogeneous devices which is not the case (from Fig. 2 ) and

oes not compensate for noise across smartphones. The neural network

odel itself is not especially designed for pattern matching, and sacri-

ces predictability of localization error for faster training time in the on-

ine phase. Further, a neural network-based localization framework such

s STI-WELM requires extremely large sets of training data which may

ot a be a realistic and scalable approach for indoor environments. In the

ew cases that SHERPA-HMM is outperformed by STI-WELM, SHERPA-

MM still performs within the acceptable range of accuracy and is very

lose to STI-WELM in terms of median error. We also note that for

ost paths considered in Fig. 9 , SHERPA-HMM outperforms KNN. In

he few cases where it is outperformed by KNN, its accuracy loss is very

ow. 

In some of the cases such as in Fig. 9 (d), we observe that SHERPA-

MM delivers relatively higher localization error as compared to

HERPA . We found that the major cause of this was that the HMM model

alsely predicts that a user has turned back when the user is actually

oving forward along a path. This is caused by noisy fingerprints and

he fact that we are using a simple transition matrix where the proba-

ility of the user moving in any direction is the same. Also, we do not

tilize other motion sensors such as magnetic and gyroscope to identify

ituations where the user is changing directions [35] . However, even

ith this drawback SHERPA-HMM is able to meet our target accuracy

f 2 m across the board. 

The experiments performed in this work revealed that certain de-

ices such as the low-cost BLU smartphone produce particularly noisy

nd inconsistent Wi-Fi RSSI measurements. Even though SHERPA-HMM

ttempts to minimize the impact of noise by taking into account mul-

iple Wi-Fi scans for each location prediction, users should be wary of

he quality limitations of such low-cost devices, especially when using

hem for indoor localization and navigation. 
.4. Comparison of execution times 

To highlight the lightweight design of our approach, we show the

ean execution time of location predictions for SHERPA-HMM and prior

ork frameworks executing on the OP3 device. For brevity, results for

nly one path ( Lib_Study ) are shown. The specific path was chosen for

his experiment as it was the largest one with 13,080 data points (60

 × 218 WAPs) available. The OP3 device was randomly chosen as we

xpect the overall trends of this experiment to remain the same across

martphones. 

The results of this experiment are shown in Fig. 10 . The RBF tech-

ique is found to take over 2 s to execute. This behavior can be at-

ributed to the fact that RBF requires sorting of Wi-Fi RSSI values for

very scanned fingerprint in the testing phase, unlike any of the other
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echniques. STI-WELM takes the least time to predict locations. How-

ver, the highly degraded accuracy with STI-WELM, especially in the

resence of device heterogeneity (as seen in Fig. 9 ) is a major limitation

or STI-WELM. After STI-WELM ( Fig. 10 ), SHERPA is one of the quickest

ocalization frameworks with an average prediction time of 0.43 s that is

lightly lower than the lightweight Euclidean-based KNN approach that

akes 0.47 s for a prediction. Finally, SHERPA-HMM delivers its predic-

ion results in 0.48 s which is only slightly higher than KNN. As com-

ared to SHERPA, SHERPA-HMM takes ~0.05 s longer but has proven

o deliver significantly better results as shown in Section 7.3. 

In summary, from the results presented in this section, it is evident

hat our proposed SHERPA-HMM framework for is a promising approach

hat provides highly accurate, lightweight, smartphone heterogeneity-

esilient indoor localization. A major strength of this framework is that

t can be easily ported across smartphones without the need of any cal-

bration effort or cloud-based service to execute. 

. Conclusion and future work 

In this paper, we proposed the SHERPA-HMM framework that is a

omputationally lightweight solution to the mobile device heterogene-

ty problem for fingerprinting-based indoor localization. Our analysis

n this work provides important insights into the role of mobile device

eterogeneity on localization accuracy. SHERPA-HMM was able to de-

iver superior levels of accuracy as compared to state-of-the-art indoor

ocalization techniques using only a limited number of samples for each

ngerprinting location. We also established that developing algorithms

hat can be easily ported across devices with minimal loss in localization

ccuracy is a crucial step towards the actuation of fingerprinting-based

ocalization frameworks in the real world. 

As part of our future work, we would like to focus on improving

he reliability of the proposed framework through incorporating iner-

ial and magnetic information in the HMM formulation. This would

reatly reduce the chances of the Viterbi algorithm predicting false user

ovement direction changes. Another improvement could be to dynam-

cally increase the scan memory variable such that user predictions are

ade with higher confidence in situations where the online fingerprint

s noisy. 
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