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Abstract—We propose and experimentally validate a new ray 

spawning and associated double count removal (DCR) technique 

for shooting bouncing ray tracing (SBR). This technique allows, 

for the first time, efficient parallelization of ray DCR, the major 

bottleneck and least parallel aspect of modern SBR ray-tracing 

relying on the ray-cone approximation (RCA). We define non-

self-adjacent (NSA) ray classes on a recursively sampled 

icosahedron, guaranteeing removal of mutual adjacency data 

dependencies between rays that previously prevented efficient 

parallelization of ray double count removal and, by extension, 

SBR. Using a GPU-parallelized implementation of the technique, 

we demonstrate speedups of DCR over 300×, limited in our 

testing only by the available hardware. As DCR is the 

asymptotically dominant contributor to the computation time of 

SBR-RCA, with respect to the number of parallel processes 

available, the achieved speedup applies to parallel SBR-RCA as a 

whole.  

 
Index Terms—Electromagnetic propagation modeling, 

asymptotic high-frequency techniques, high-performance 

computing,  parallelization, GPUs, ray tracing method, shooting 

bouncing rays techniques, double count removal, ray-cone 

approximation, ray classes, large-scale simulations. 

 

I. INTRODUCTION 

ay tracing is an old and simple computational 

electromagnetics (CEM) technique that has seen renewed 

interest in recent years due to increased computing power 

and demand for fast propagation modeling in electrically-

large, complicated environments. A frequency-asymptotic 

technique, ray tracing is well-suited to the types of 

propagation problems to which classical full-wave techniques 

like method of moments (MoM), finite difference (FD), and 

finite element method (FEM) are least suited. As such, ray 

tracing fills an important gap in the toolkit of methods 

available to CEM researchers and practitioners for diverse 

applications including 5G planning, propagation modeling in 

tunnel environments, and received signal strength (RSS) 
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mapping [1]-[4].  As ray tracing is applied to a broader suite of 

increasingly demanding applications, the efficiency and 

scalability of the technique is now, more than ever, paramount 

to its usefulness. 

For electrically-large propagation environments with linear, 

homogeneous media, ray tracing techniques have 

predominantly relied on image theory (IT) or the shooting-

bouncing rays method (SBR); see [5] for an overview of these 

methods. In both cases, rather than explicitly solving 

variational formulations of Maxwell’s equations and resulting 

linear systems, as full-wave techniques do, ray tracing 

iteratively constructs an approximate solution by propagating 

rays, each representing radiation from a source over a 

differential solid angle, and recording their interaction with the 

environment constrained as modeled by high frequency 

approximations like the Fresnel coefficients and theory of 

geometric optics (GO). For an excellent historical and 

theoretical background, see [6].  

Image theory computes the paths rays follow from a source 

to a given receiver by recursively reflecting a source over all 

boundaries visible from that source to produce a set of image 

sources—each image source then treated as a new source. This 

process is continued to some maximum number of reflections, 

𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 , at which point any valid paths from source to 

receiver with up to 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠  reflections can be computed 

from the set of image sources—see [6] for a good overview. 

The advantage of this approach is that all possible paths 

between source and receiver with 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠  or fewer are 

captured exactly, reducing phase error. However, the 

computational complexity of IT is 𝑂(𝑁𝑓𝑎𝑐𝑒𝑠
𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠), where 

𝑁𝑓𝑎𝑐𝑒𝑠 is the number of flat surfaces used to represent material 

discontinuities in the propagation environment. Since, for 

modern problems, 𝑁𝑓𝑎𝑐𝑒𝑠  is large, IT quickly becomes 

computationally untenable, even for small numbers of 

reflections. We note, however, that some techniques like 

reflection spaces or illumination zones can somewhat reduce 

the computational cost of IT. 

SBR overcomes the computational shortcomings of IT by 

instead choosing a set of ray directions and a fixed number of 

rays a priori, then propagating each ray through the 

environment until it has made 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠  reflections or some 

other stop criterion is met, e.g., the ray leaving some region of 

interest. This yields linear complexity with the number of rays, 

and, using domain partitioning methods like the binary space 

partition (BSP), logarithmic complexity with respect to the 

Non-Self-Adjacent Ray Classes for 

Parallelizable Shooting Bouncing Ray Tracing 

Double Count Removal 

Cam Key, Student Member, IEEE, Blake A. Troksa, Student Member, IEEE, Stephen Kasdorf, and 

Branislav M. Notaroš, Fellow, IEEE 

R 

Authorized licensed use limited to: Branislav Notaros. Downloaded on December 15,2020 at 05:35:49 UTC from IEEE Xplore.  Restrictions apply. 



2379-8793 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JMMCT.2020.3044011, IEEE Journal
on Multiscale and Multiphysics Computational Techniques

   

 

2 

number of facets [7]. However, this does not produce a set of 

exact paths between source point and receiver point, 

necessitating a method to decide which rays’ field 

contributions should be counted at a given receiver. This is 

typically resolved by applying either the ray-cone 

approximation (RCA) [8]-[9] or ray-tube launching (RTL) 

[10]. Note that we only consider flat, triangular facets in this 

paper. 

RTL has the advantage of exactly tiling the sphere of 

possible initial ray directions with no overlap. However, RTL 

introduces cases where ray tubes are split when only part of a 

tube’s subtended solid angle reflects from a given face. 

Handling such cases introduces computational overhead and 

heavily-conditional execution, yielding a ray count that grows 

dynamically with reflection order in a way that cannot quickly 

be predicted a priori. RTL can therefore not be parallelized in 

an efficient, synchronous manner, making it a poor choice for 

modern SBR applications where scalability on synchronous, 

parallel hardware like graphics processing units (GPUs) is 

critical [11].  

RCA also suffers from a barrier to efficient and complete 

parallelization: double count removal (DCR). DCR is 

necessary when using RCA due to inherent overlap between 

ray cones in the three-dimensional (3D) domain [11]. If a 

receiver point falls within the overlap of two cones from the 

same source, the field contribution from that source may be 

counted twice, leading to significant error in the resulting 

received power [11]. This necessitates a method to either 

prevent such cases a priori or detect them and remove them 

during computation. Many DCR approaches have been 

proposed in the past, but none have been developed with 

scalability on modern parallel hardware in mind. In [12], the 

authors present a DCR method by which rays are described by 

a characteristic sequence of planes hit, such that two rays with 

the same characteristic sequence when arriving at the same 

receiver are duplicates, necessitating the removal of one. This 

requires a comparison of characteristic sequences between all 

rays that arrive at a receiver to detect identical characteristic 

sequences—leading to a worst case complexity of 𝑂(𝑁𝑟𝑎𝑦𝑠
2) 

and producing a mutual data-dependency between rays that 

prevents effective parallelization. This also suffers from 

additional computational overhead where multiple coplanar, 

adjacent facets are present and therefore need to be tracked as 

the same object to maintain uniqueness of the characteristic 

sequence of a unique ray. A similar method is described in 

[13] that relies on information about each ray’s number of 

reflections, distance traveled, and angle of transmission to 

detect and remove double counts. This is essentially a 

continuous version of the characteristic sequence from [12], 

with which we identify ray paths by continuous-valued 

properties of their propagation paths rather than discrete 

indices. The method in [13] suffers from the same mutual 

data-dependency between rays that hinders the method in [12] 

from effective parallelization. The most common type of DCR 

is described well in [14], which uses explicit geometric 

calculations to determine if two rays that have arrived at the 

same reception sphere contain the reception point in the 

overlap of their ray cones, indicating a double count. This 

approach is fast and reliable for sequential execution, but, as 

with previous methods, suffers from a mutual data dependency 

between rays that hinders its parallel performance and 

scalability. A useful structured sampling method is described 

in [8] that constrains the number of neighboring rays for any 

given ray, limiting double count checks to a known set of 

neighbor rays by sampling recursively on the icosahedron. 

This is useful to reduce the worst-case complexity of DCR to 

𝑂(𝑁𝑟𝑎𝑦𝑠). However, the DCR method described in [8] still 

introduces a mutual data dependency between neighboring 

rays that prevents efficient parallelization. We elaborate on 

what we mean by a data dependency and why it makes 

efficient parallelization difficult in Section V.C. 

This paper proposes an efficient method of double count 

removal in SBR ray tracing that is highly parallelizable and 

removes the last major bottleneck to efficient parallel scaling 

of SBR applied to CEM. We take a similar sampling approach 

as [8] to limit potential double counts for each ray to a set of 

known neighbor candidates and maintain an 𝑂(𝑁𝑟𝑎𝑦𝑠) worst 

case run time, but introduce a new DCR method that does not 

suffer from the mutual data dependency between rays that 

prevents effective parallelization of previous DCR methods. 

We introduce non-self-adjacent (NSA) classes of rays on the 

structured icosahedral and octahedral samplings such that no 

two rays in the same class are neighbors. When only one NSA 

class is processed at a time, no ray has mutual data 

dependency with any other ray currently being processed, 

removing the major barrier presented by previous methods to 

effective parallelization of SBR. Due to the structure of the 

sampling we use and the way we define the NSA classes, 

information from at most six neighbor rays needs to be 

checked for double counting at the time a given ray is 

processed. The number of neighbor rays that need to be 

checked and their indices is known a priori for any ray. The 

NSA classes we introduce have useful properties like 

symmetry, asymptotic inter-class isotropy, and simple 

definition yielding easy implementation. We present a four-

class NSA formulation on the icosahedron, maintaining 

complete non-self-adjacency at the minor expense of inter-

class isotropy. We also present two three-class NSA 

formulations: one on the icosahedron maintaining inter-class 

isotropy but only asymptotic NSA, and one on the octahedron, 

maintaining inter-class isotropy and full NSA at the expense 

of decreased global sampling regularity. 

In the rest of the paper, we introduce these NSA classes and 

associated DCR methodology. We begin with a review of the 

icosahedral sampling technique, followed by a description of 

the introduced NSA classes, along with their definition, useful 

properties, and relative advantages. We next discuss 

application of the introduced NSA classes to highly-scalable 

DCR, offering a theoretical discussion of the asymptotic 

correctness of our simple DCR method in terms of sampling 

the SBR image space. We introduce the image space with 

motivating examples to facilitate this theoretical discussion. 

We then present speedup, computation time, and scaling 

results demonstrating efficacy of the proposed method, 

achieving over 300× speedup. We conclude by further 

outlining the potential of the new DCR technique using NSA 

classes for efficient and scalable SBR. 
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II. MATHEMATICAL DEFINITIONS 

To facilitate simple discussion of NSA classes, we make a 

variety of useful definitions and assumptions while noting a 

few important consequences. We begin denoting by 𝑅 the set 

of all rays to be processed and by 𝑟𝑖 ∈ 𝑅 the ith ray in R. We 

assume here that each ray is unique, or formally that 𝑟𝑖 ≠
𝑟𝑗 , 𝑖 ≠ 𝑗. We then define the total number of rays, 𝑁𝑟𝑎𝑦𝑠 = |𝑅|. 

We also denote by K the set of ray classes, and by 𝐶𝑖 ∈ 𝐾 a 

specific ray class. A ray class is a set of rays. The total number 

of classes is 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = |𝐾|. For all classes, we enforce 

completeness ⋃ 𝐶𝑖
𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠
𝑖=1 = 𝑅, and independence 𝐶𝑖 ∩ 𝐶𝑗 =

∅, 𝑖 ≠ 𝑗. In general, we denote the neighborhood (set of 

neighbors) of 𝑟𝑖 as 𝑁𝑖 with only the constraint that 𝑟𝑖 ∉ 𝑁𝑖. The 

most useful choice of 𝑁𝑖 for RCA is the set of spherical 

Voronoi neighbors of 𝑟𝑖, denoted here 𝑉𝑖. However, we 

maintain generality in the choice of neighbors wherever we 

use 𝑁𝑖. We formally define the NSA property as  

 

{𝑟𝑖|𝑟𝑖 ∈ 𝑁𝑗, 𝑟𝑖 ∈ 𝐶𝑘, 𝑟𝑗 ∈ 𝐶𝑘} = ∅,   ∀𝐶𝑘 ∈ 𝐾,                         (1) 

 

and similarly, the asymptotic NSA property as 

 

lim
𝑁𝑟𝑎𝑦𝑠→∞

|{𝑟𝑖|𝑟𝑖∈𝑁𝑗,𝑟𝑖∈𝐶𝑘,𝑟𝑗∈𝐶𝑘}|

|{𝑟𝑖|𝑟𝑖∈𝐶𝑘}|
= 0, ∀𝐶𝑘 ∈ 𝐾.                         (2) 

 

III. NON-SELF-ADJACENT RAY CLASSES 

NSA ray classes are those that satisfy (1). Structured DCR 

methods like ours or [8] limit the DCR data dependency to a 

known neighbor set. For such DCR methods, ray classes that 

satisfy (1) guarantee that no rays within a given class are 

dependent, allowing all members of a class to be processed in 

parallel. Any ray class can satisfy (1) with the correct neighbor 

sets, most simply and least usefully 𝑁𝑖 = ∅, ∀𝑟𝑖 ∈ 𝑅. In 

competition with this, the specific choice  𝑁𝑖 = 𝑉𝑖 , ∀𝑟𝑖 ∈ 𝑅 is 

geometrically correct for detecting SBR double counts but 

constrains the possible classes that satisfy (1) for a given 

sampling pattern. Satisfaction of (2) gives an easy solution to 

this problem. For ray classes with 𝑁𝑖 = 𝑉𝑖 , ∀𝑟𝑖 ∈ 𝑅 that satisfy 

(2) but not (1), we can ignore possible double counts between 

neighbors in the same class, allowing members of the same 

class to be processed in parallel while introducing only 

minimal error. In practice, this is done by excluding from the 

neighbor set of a ray any Voronoi neighbors that share the 

class of that ray. Because of this, ray classes based on 𝑁𝑖 =
𝑉𝑖 , ∀𝑟𝑖 ∈ 𝑅 that satisfy only (2) are almost as useful as those 

that satisfy (1). We show three useful ray class definitions 

based on 𝑁𝑖 = 𝑉𝑖 , ∀𝑟𝑖 ∈ 𝑅 that satisfy (2) or (1). 

Among the possible methods to define NSA ray classes for 

SBR, the simplest is to assign each ray to its own class. Since, 

for removal of the SBR DCR data dependency, we require ray 

classes to be processed sequentially, assignment of each ray to 

its own class is equivalent to fully sequential SBR. This may 

seem trivial but reveals an important consideration for the 

number of rays per class: if the number of rays per class is less 

than the number of rays our given hardware can process in 

parallel, then ray classing presents a computational bottleneck. 

To maximize the minimum value of 𝑁𝑟𝑎𝑦𝑠 for which this 

bottleneck occurs, it is desirable to choose the minimum 

number of ray classes possible—the fewer ray classes, the 

more rays per class. In choosing the minimum number of ray 

classes, it is easy to see that neither one class nor two classes 

can give us the necessary NSA property. For 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 1, (1) 

is not satisfied unless 𝑁𝑖 = ∅, ∀𝑟𝑖 ∈ 𝑅, otherwise a ray and its 

neighbors are in the same class. For 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 2, (1) is not 

satisfied unless neighbors of a ray are themselves never 

neighbors, or in other words, the graph, 𝐺, constructed by 

connecting each 𝑟𝑖 ∈ 𝑅 to its neighbors contains no 

topological triangles. 𝐺 with no topological triangles can exist 

in general, but for the most useful case of 𝑁𝑖 = 𝑉𝑖 , ∀𝑟𝑖 ∈ 𝑅 , 𝐺 

is the spherical Delaunay triangulation of 𝑅, which contains 

only triangles for 𝑁𝑟𝑎𝑦𝑠 > 2.  

For (1) to hold when 𝑁𝑖 = 𝑉𝑖 , ∀𝑟𝑖 ∈ 𝑅 , neighbors of any  

𝑟𝑖 ∈ 𝑅 cannot be in the same class as 𝑟𝑖 and no adjacent 

neighbors can be in the same class as each other. This 

requires, at minimum, 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3 to fully satisfy (1). Since 

𝑉𝑖 lie on a topological circle around 𝑟𝑖 we require  

 

|𝑉𝑖| 𝑚𝑜𝑑 2 = 0, ∀𝑟𝑖 ∈ 𝑅,                                                       (3) 

 

or in other words, an even number of neighbors for each ray. 

A few regular neighborhoods with varying neighbor counts 

are shown in Fig. 1.  

 

         (a)                     (b)                      (c)                      (d)  

Fig. 1.  Examples of uniform local topology with three classes: (a) triangular, 

(b) square, (c) pentagonal, and (d) hexagonal. Neighbors of central cell lie on 
a topological circle. 

 

For global sampling uniformity, we desire the Voronoi cells 

of all rays to be identical, regular polygons. In the Euclidean 

plane, we could simply tile with either squares (Fig. 1b) or 

regular hexagons (Fig. 1d) and the class patterns from Fig. 1 to 

satisfy sampling uniformity and (1). However, satisfying 

sampling uniformity on the sphere is only possible for the five 

platonic solids, offering at most 20 sample points in the case 

of the dodecahedron (sampled on vertices) or the icosahedron 

(sampled on face centroids). This motivates methods like the 

icosahedral subdivision approach in [8] that, more generally 

speaking, sample at the vertices of high-frequency geodesic 

polyhedra to maximize sampling uniformity in a structured 

way.  

A. Three Classes in Icosahedral Topology 

Unfortunately, geodesic polyhedra with icosahedral 
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symmetry never emit a topology that can satisfy (1) with 

𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3; they contain 12 vertices with 𝑁𝑖 = 5, 

necessitating 𝑁𝑖 ∩ 𝑁𝑗 ≠ ∅, 𝑖 ≠ 𝑗 in some cases. However, this 

defect need only occur at the edges of the original (pre-

subdivision) icosahedron. The number of samples that lie on 

the original icosahedral edges grows linearly with the number 

of subdivisions while the total number of sample points grows 

quadratically. The asymptotic NSA property (2) is therefore 

satisfied with 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3. We show a simple method here.  

We can easily define a set of possible sample points on any 

triangle and three associated classes that satisfy (1) when only 

points on that triangle, 𝑡, are considered. We denote by 

{𝑎𝑡 , 𝑏𝑡 , 𝑐𝑡} the set of vertex locations of the triangle, and by 

𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 the desired number of subdivisions (an edge of  𝑡 is 

split into 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 new edges). Each sample point on the 

triangle is then given by 

 

𝑠𝑖,𝑗
𝑡 =  𝑎𝑡 +

𝑖

𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠
(𝑏𝑡 − 𝑎𝑡) +

𝑗

𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠
(𝑐𝑡 − 𝑎𝑡),            (4) 

 

with indices defined by 

 

𝑖, 𝑗 ∈ ℕ0, 𝑖, 𝑗 ≤ 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 + 1, 𝑖 + 𝑗 ≤ 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 + 1.           (5)                                

 

The classes on 𝑡 are then given by 

 

𝐶𝑘
𝑡 = {𝑠𝑖,𝑗

𝑡 |(𝑗 − 𝑖) 𝑚𝑜𝑑 3 = 𝑘 − 1}, 𝑘 ∈ {1,2,3}.                   (6) 

 

Figure 2 shows these classes on a triangle for 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 11. 

 

 
Fig. 2.  NSA classes defined by (6) for 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 11. 

 

Since (6) may assign different classes to a point lying on an 

edge depending on which adjacent triangle we consider, we 

require an extra step to maintain class independence 𝐶𝑖 ∩ 𝐶𝑗 =

∅, 𝑖 ≠ 𝑗 and expand classes from (6) to the entirety of a 

geodesic polyhedron by a union of (6) over its triangles. 

We denote by 𝐺 the set of edges, by 𝑃 the set of vertices, 

and by 𝑇 the set of triangular facets of an arbitrary polyhedron 

with triangular faces. Each vertex 𝑝 ∈ 𝑃 has a set of incident 

edges. We specify that a given 𝑝 is a member of only one of 

its incident edges. Similarly, each edge 𝑔 ∈ 𝐺 separates two 

triangular faces. We specify that points on a given 𝑔 are a 

member of only one of the two triangles it separates. By these 

definitions, each point on the geodesic polyhedron is a 

member of one and only one 𝑡 ∈ 𝑇. If  𝑠𝑖,𝑗
𝑡 ∈ 𝑡, we say 𝑡 is the 

parent triangle of 𝑠𝑖,𝑗
𝑡 . The parent triangle of any sample point 

is unique. The classes on the geodesic polyhedron are then 

given by 

 

𝐶𝑘 = ⋃ 𝐶𝑘
𝑡

𝑡∈𝑇

,             (7) 

 

 

where indices are as defined in (5). Figure 3 shows these 

classes on the icosahedron with 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 13. 

 

 
 

Fig. 3.  Asymptotically-NSA classes on the icosahedron with  𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 13 

and 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3. Voronoi-adjacent rays in the same class are common here 

due to very low ray count.  

 

This choice of classes and sample points offers an excellent 

foundation for parallel SBR-DCR. Although only (2) is 

satisfied, the points that violate (1) are constrained to those 

lying on the edges of the original icosahedron and their 

immediate neighbors. These points represent a proportion of 

the total 𝑁𝑟𝑎𝑦𝑠 that decreases linearly with increased 

𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠. This makes double counting between adjacent 

same-class neighbors inconsequential at the high ray counts 

typically used in most SBR applications.  

B. Three Classes in Octahedral Topology 

The presence of twelve points with five neighbors on 

geodesic polyhedra with icosahedral topology prevents such  
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Fig. 4. Perfect NSA classes on the icosahedron with  𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 17 and 

𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3. No Voronoi-adjacent rays are in the same class. 

 

polyhedra from satisfying (3) at all vertices. Octahedral 

geodesic polyhedra, on the other hand, contain only points that 

satisfy (3), making them a good option for sampling where 

perfect non-self-adjacency is desired with the minimum 

number of classes.  

Figure 4 shows (6) and (7) applied to the octahedron with 

𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3. We use an ordering of {𝑎𝑡 , 𝑏𝑡 , 𝑐𝑡} for each 

triangle that maintains class independence on edges between 

triangles regardless of parent triangle assignment. Many such 

orderings exist on the octahedron, so we do not specify one 

here. These octahedral classes have the advantage of fully 

satisfying (1) with only three classes, but at the cost of 

somewhat reduced sample uniformity compared to the 

icosahedron. 
 

C. Four Classes in Icosahedral Topology 

To achieve both high sampling uniformity and satisfaction 

of (1), we can define fully NSA classes on the icosahedron 

with 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 4. We choose one of many four-color vertex 

colorings of the icosahedron, with colors corresponding to 

class indices 𝑘 ∈ {1,2,3,4}. This assigns to each of the 

icosahedron’s twelve vertices one of four classes, such that no 

adjacent vertices share a class.  

On a given triangle, we again denote by {𝑎𝑡 , 𝑏𝑡 , 𝑐𝑡} the set 

of vertex locations, and now by {𝑘𝑎𝑡
, 𝑘𝑏𝑡

, 𝑘𝑐𝑡
} the set of 

corresponding class indices. For simplicity, we define the 

vector ℎ = 〈𝑘𝑎𝑡
, 𝑘𝑏𝑡

, 𝑘𝑐𝑡
〉, with ℎ(𝑙) denoting its lth entry. 

Sample points are again defined by (4) with indices defined by 

(5). However, instead of (6), the classes on 𝑡 are now given by 

 

𝐶ℎ(𝑙)
𝑡 = {𝑠𝑖,𝑗

𝑡 |(𝑗 − 𝑖) 𝑚𝑜𝑑 3 = ℎ(𝑙) − 1}, 𝑙 ∈ {1,2,3}.           (8)  

 

Assigning parent triangles as before to maintain class  

 
 

Fig. 5. Perfect NSA classes on the icosahedron with  𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 13 and 

𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 4. No Voronoi-adjacent rays are in the same class. 

 

independence, the four classes on the icosahedral geodesic 

polyhedron are again given by (7). Note that 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠  must 

be one less than an integer multiple of 3 to maintain class 

independence. Figure 5 shows (7) and (8) applied to the 

icosahedron with 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 13 and 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 4. These 

classes fully satisfy (1) and have the same sampling 

uniformity as those from Fig. 3, but each class no longer 

samples the entire sphere. 

IV. SBR AS A SAMPLING OF THE IMAGE SPACE 

To facilitate a discussion of SBR DCR, we introduce the 

concepts of the environment space and image space. The 

environment space, 𝐸, is the physical space in which we are 

modeling propagation. Any point 𝑒 ∈ 𝐸 is given by a scalar 

real-valued triplet with spherical coordinates 〈𝜌, 𝜃, 𝜙〉, 𝜌 ∈
[0, ∞),   𝜃 ∈ [0, 𝜋], 𝜙 ∈ (−𝜋, 𝜋]. A ray, 𝑟, with initial 

direction 〈𝜃0, 𝜙0〉 follows a curve, 𝑠, through 𝐸, parametrized 

by 𝑑 such that 𝑠(𝑑) = 𝑒 is the point on 𝑠 at which the ray has 

traveled 𝑑 distance along 𝑠. The curve 𝑠 is a straight line 

radiating from the origin if no reflections occur, a continuous 

path composed of line segments of reflections occur in 

homogeneous media, or a general continuous, curved path in 

inhomogeneous media. We consider only the first two cases 

here. The image space, 𝑄, represents the space in which paths 

taken by rays follow straight lines radiating from the origin 

regardless of their reflections in the environment space. Note 

that we consider only reflections here, not transmission. Any 

point 𝑞 ∈ 𝑄 is also given by a real-valued triplet with 

spherical coordinates 〈𝑑, 𝜃0, 𝜙0〉, 𝑑 ∈ [0, 𝐷𝑚𝑎𝑥], 𝜃 ∈ [0,2𝜋],
𝜙 ∈ (−𝜋, 𝜋], where 𝑑 is the distance traveled in 𝐸 for the ray 

with initial direction 〈𝜃0, 𝜙0〉. 𝐷𝑚𝑎𝑥 gives the maximum 

propagation distance considered. The ray source is the origin 
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of both spaces. We define a map 𝑀 such that 𝑀(𝑞) = 𝑒 =
𝑠(𝑑). Note that 𝑀 is in general not invertible: ∃𝑒 ∈
𝐸 𝑠. 𝑡. {𝑞|𝑀(𝑞) = 𝑒} = ∅; we call such 𝑒 occluded. Note that 

𝐸 = 𝑄 in homogeneous media with no reflections and 𝐷𝑚𝑎𝑥 =
∞. Note also that the concepts of 𝐸 and 𝑄 apply to SBR as a 

whole and are not specific to the NSA or DCR methods we 

present in this paper. 

For clarity, we give a few examples, shown in Fig. 6, in two 

dimensions of 𝐸 and the associated 𝑄. To produce these plots, 

we constrained 𝜙 = 0 and uniformly distributed initial ray 

directions in 𝜃. Since a given ray only samples 𝐸 along a 

given path, in turn sampling 𝑄 only along a straight radial path 

from the origin, we interpolate 𝑄 between rays using RCA and 

assigning any 𝑞 not on a ray path the properties of the nearest 

𝑞 on a ray path. This produces a piecewise approximation of 

𝑀: 𝑀̃. Rays were propagated for a fixed, constant distance. 

We chose 𝑁𝑟𝑎𝑦𝑠 = 1000 so no defects due to the 𝑀̃ 

approximation are visible at the chosen figure resolution and 

propagation distance. To demonstrate the relationship between  

𝐸 and 𝑄, we assign hues to 𝑒 ∈ 𝐸 corresponding to 𝜃 and 

opacity increasing with 𝜌. Each  𝑞 ∈ 𝑄 is then assigned the 

hue and opacity of 𝑀̃(𝑞).  

 

  

  

  
Fig. 6.  Examples of environment and associated image spaces. Reflectors are 

shown in black. The left column shows three examples of environment spaces: 

a single plane, a triangle, and a pentagon. The right column shows the 

associated image spaces.  

 We quantify the geometric error introduced by 

approximating the mapping 𝑀 as  

 

𝜀𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 =
3

4𝜋𝐷𝑚𝑎𝑥
4

∫‖𝑀(𝑞) − 𝑀̃(𝑞)‖

 

𝑄

𝑑𝑞. 
 

(9) 

 

Note that the 4th rather than 3rd power in (9) comes from 

normalizing with respect to 𝐷𝑚𝑎𝑥
  in addition to the volume of 

integration. We define geometric convergence of SBR as the 

property that 

 

lim
𝑁𝑟𝑎𝑦𝑠→∞

𝜀𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 = 0.                                                        (10) 

 

SBR has geometric convergence if, for an arbitrary region, Ω, 

in 𝜃, 𝜙 on the sample sphere surface,  

 

lim
𝑁𝑟𝑎𝑦𝑠→∞

|{𝑟|〈𝜃0, 𝜙0〉 ∈ Ω}| = ∞.                                           (11) 

 

It is easy to show from (4) that the sampling patterns in 

Section III enforce (11) and therefore (10). 

V. EFFICIENT, PARALLEL DOUBLE COUNT REMOVAL 

A. The Proposed Method 

To present our DCR method, we first make some 

definitions for clarity. We have a set of observation points 𝑂 

with 𝑜 ∈ 𝐸, ∀𝑜 ∈ 𝑂 and 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = |𝑂|. We denote by 

𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠  the maximum number of reflections considered 

for all rays. The goal of SBR is to compute the field at all 

observation points due to a set of source points. We consider 

only one source point at a time, combining fields at 

observation points by superposition when multiple source 

points are present. To compute from which rays contributions 

are considered at a given 𝑜 ∈ 𝑂, we use the dynamically-sized 

sphere intersection method from [14]. We choose 𝛼 from [14] 

for a given 𝑟𝑖 ∈ 𝑅 as the maximum angle between 𝑟𝑖 and any 

𝑟𝑗 ∈ 𝑉𝑖. This prevents any gaps between ray cones, allowing 

errors only in the form of overlap (double counts) between 

neighbors.  

Our DCR technique is more straightforward than those in 

[8]-[14] and can be summarized simply when implementation 

details are ignored: We process only one ray class and only the 

nth reflection for rays in that class at a time, recording any ray-

observation pairs for sphere intersections that occur between 

the nth and (n+1)th reflection. We only keep a ray-observation 

pair containing 𝑟𝑖 and 𝑜𝑗 if no neighbors of 𝑟𝑖 are members of 

pairs containing 𝑜𝑗. Note that, for NSA classes like those in 

Section III.A that satisfy (2) but not (1), we do not consider 

Voronoi-neighboring rays in the same class as neighbors for 

the purpose of DCR. This introduces an error that is 

asymptotically negligible, as discussed in Section III.A.  

This DCR method is extremely simple, and with the NSA 

classes from Section III, highly parallelizable and scalable. 
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We give a comparison to existing DCR methods as well as a 

pseudocode example for one possible implementation in 

Section V.C. First, however, we consider the glaring omission 

we make in defining such a simple method. Our method 

introduces an obvious error that previous methods have 

mitigated with more-complicated techniques. Where 

neighboring rays hit different, non-coplanar facets but 

intersect the same observation sphere with the same reflection 

count, our method will detect a false double-count not 

detected by more-rigorous DCR methods. A simple example 

of the type of false double count detected by our method is 

shown in Fig. 7. If rays 𝑟1 and 𝑟2 are neighbors, only one of 

their field contributions will be counted at 𝑜 after having 

reflected one time, even though these reflections were from 

different, non-coplanar facets. The field contributions of 𝑟1 

and 𝑟2 in this case represent different image sources, so both 

should be counted. 

 

 
Fig. 7.  A simple example of how a false double count may be detected by our 

method. If the two rays are neighbors, our method will count only one of their 

contributions at  𝑜, despite the rays representing unique images.  

 

 Production of false double counts, superficially, seem like a 

major flaw with our DCR method. However, we show here 

that the proportion of false double counts drops asymptotically 

to 0 with increased 𝑁𝑟𝑎𝑦𝑠, and by extension the asymptotic 

correctness of our DCR method. 

B. Asymptotic Correctness of the Proposed Method 

To show asymptotic correctness of our method, it suffices 

to show the proportion of neighboring rays that hit the same 

triangular facets in the same order after having traveled some 

finite maximum distance 𝐷𝑚𝑎𝑥
  approaches 1 asymptotically as 

𝑁𝑟𝑎𝑦𝑠 → ∞. Satisfaction of this property can be shown using 

the notion of the image space as follows. 

Denote by 𝐸𝐺 the set of points in 𝐸 on facet edges and 

𝑄𝐺 = {𝑞|𝑀(𝑞) ∈ 𝐸𝐺}. Projecting 𝑄𝐺 in the 𝑑 direction onto 

the unit sphere gives 𝑄𝐺′. If the domain contains a finite 

number of reflecting facets and 𝐷𝑚𝑎𝑥
  is finite, 𝑄𝐺′ partitions 

the unit sphere into a finite number of polygonal regions. Note 

that these partitions correspond to the largest possible 

polygonal cone boundaries of ray tubes in RTL after splitting 

if rays are only traced until 𝐷𝑚𝑎𝑥
 . By (11) and the observation 

that the region boundaries subtend only an infinitesimal solid 

angle, the proportion of neighboring rays that hit the same 

triangular facets in the same order by their 𝐷𝑚𝑎𝑥
  approaches 1 

and our DCR method introduces a proportion of false double 

counts that decreases to 0 as 𝑁𝑟𝑎𝑦𝑠 → ∞. 

Convergence is also apparent from (11) and the perspective 

of image theory. Since (11) implies the solid angle subtended 

by each ray cone decreases asymptotically toward zero as 

𝑁𝑟𝑎𝑦𝑠 → ∞, the probability of neighboring rays hitting 

different facets at their first reflection (necessary but not 

sufficient for a false double count) also decreases toward zero. 

In the case where rays hit the same facet at their first 

reflection, the resulting reflected rays can be considered to 

radiate from the same image source. The rays’ second 

reflection can then be treated as a first reflection, yielding an 

inductive proof of convergence for arbitrary reflection count 

or 𝐷𝑚𝑎𝑥
 . 

C. Pseudocode and Comparison to Existing DCR Methods 

To understand our DCR approach with NSA classes and 

why it allows for efficient parallelization, it is useful to 

understand why existing approaches make this more difficult. 

Generically speaking, existing DCR methods attempt to apply 

some function 𝐷𝐶𝑅(𝑟𝑖 , 𝑜, 𝑐), to determine whether a ray 

causes a double count at a given observation 𝑜 for a given 

context 𝑐 and, if so, resolve that double count in some data 

structure that tracks ray-observation intersections. All ray-

observation intersections remaining after DCR are counted in 

the final field computations for the corresponding observation. 

Our method is no different in this regard. Consider the case, 

however, where 𝑟1, 𝑟2, and 𝑟3 are mutual neighbors; i.e. 

𝑟1, 𝑟2 ∈ 𝑁3, 𝑟1, 𝑟3 ∈ 𝑁2, 𝑟2, 𝑟3 ∈ 𝑁1. As noted in Section III, the 

correct neighbor choice 𝑁𝑖 = 𝑉𝑖 , ∀𝑟𝑖 ∈ 𝑅 yields the spherical 

Delaunay triangulation for 𝐺, so cases like this occur for every 

ray regardless of the sampling method chosen. Consider also 

that 𝑜 falls in the overlap of all three rays’ cones. Only one of 

these rays should be counted, although each of the three is 

equally valid under RCA. For a given context, we have three 

potential instances of 𝐷𝐶𝑅 to process: 𝐷𝐶𝑅(𝑟1, 𝑜, 𝑐), 

𝐷𝐶𝑅(𝑟2, 𝑜, 𝑐), and 𝐷𝐶𝑅(𝑟3, 𝑜, 𝑐). To correctly resolve this 

situation by counting only one of the three rays, the outputs of 

the three processes must be consistent, e.g. if 𝑟1 is counted, 𝑟2 

and 𝑟3 cannot be counted. This requires that, for instance, 

computation of 𝐷𝐶𝑅(𝑟2, 𝑜, 𝑐) and 𝐷𝐶𝑅(𝑟3, 𝑜, 𝑐) is dependent 

on the result of 𝐷𝐶𝑅(𝑟1, 𝑜, 𝑐), so the three processes cannot 

complete execution simultaneously. This is equally true if 

𝐷𝐶𝑅 constitutes a simple comparison of characteristic 

sequences [12] as it is for geometric computations between 

rays [14]. The problem lies in how synchronization 

mechanisms like mutexes that allow such data dependencies to 

be handled in a parallel execution environment delay process 

completion; a given thread must wait for others on which it is 

dependent. Such parallelization approaches are inefficient, 

since processor cycles are wasted while waiting, or, in more 

complicated approaches, while switching between threads.  

To further illustrate the problem presented by adjacent ray 

data dependencies, we give below two examples of 

pseudocode, one for our DCR approach with NSA classes, and 

another for a generic DCR approach without NSA classes. For 

both examples, we assume that neighbor sets are defined and 

known ahead of time, as in our method or e.g. [8], since this is 

already a common approach in recent literature to limit the 

data dependency to only a small neighbor set. We also assume 

that indices of observations intersected by a given ray, 𝑟𝑖, are 

recorded in a hitlist denoted 𝐻𝐿𝑖 . We denote a generic 

observation point index as 𝑖𝑑𝑥. There are many ways to  
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manage this information, but we consider this the simplest and 

most illustrative.  

 
1 for 𝑘 ∈ [1. . 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠] do 

2   for 𝑖 ∈ [1. . |𝐶𝑘|] do in parallel 
3    for 𝑟𝑗 ∈ 𝑁𝑖 do 

4    𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 ← {𝑖𝑑𝑥|𝑖𝑑𝑥 ∈ 𝐻𝐿𝑖, 𝑖𝑑𝑥 ∈ 𝐻𝐿𝑗} 

5    for 𝑖𝑑𝑥 ∈ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 do 
6     𝐻𝐿𝑖 ← 𝐻𝐿𝑖\{𝑖𝑑𝑥} 

 

Using NSA classes as above, only non-neighboring rays are 

processed in parallel, so 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 can be readily computed 

for each parallel instance. Note that lines 3 through 6 are 

effectively an implementation of 𝐷𝐶𝑅(𝑟𝑖 , 𝑜, 𝑐). Consider, in 

contrast, if we use no NSA classes. We must somehow resolve 

cases like 𝑟1, 𝑟2 ∈ 𝑁3, 𝑟1, 𝑟3 ∈ 𝑁2, 𝑟2, 𝑟3 ∈ 𝑁1. One way to do 

this could be: 
 

1 for 𝑖 ∈ [1. . 𝑁𝑟𝑎𝑦𝑠] do in parallel 

2  for 𝑟𝑗 ∈ 𝑁𝑖 do 

3   if 𝑖 > 1 then 
3    while not 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑗 do 

4     wait 

5   𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 ← {𝑖𝑑𝑥|𝑖𝑑𝑥 ∈ 𝐻𝐿𝑖, 𝑖𝑑𝑥 ∈ 𝐻𝐿𝑗} 

6   for 𝑖𝑑𝑥 ∈ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 do 
7    𝐻𝐿𝑖 ← 𝐻𝐿𝑖\{𝑖𝑑𝑥} 

8  𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑖 ← 𝑡𝑟𝑢𝑒 
 

Rays processed in parallel may now be dependent on each 

other, so we define the Boolean variable 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑗 to keep 

track of whether double count removal has been completed for 

𝑟𝑗. Here, lines 2 through 8 are effectively an implementation of 

𝐷𝐶𝑅(𝑟𝑖 , 𝑜, 𝑐). The process for 𝑟1 can execute immediately, but 

other threads must wait until their dependencies are resolved. 

In fact, in this implementation, most threads will spend most 

of the total computation time waiting. 

For simplicity, both examples intentionally ignore context. 

This is appropriate for our DCR method, but not for existing 

methods. Context is information other than ray index and 

observation index that identifies a unique field contribution. 

For instance, in [12], 𝑐 is a characteristic sequence of facets hit 

by a ray before registering a hit for an observation. To 

consider context in general, updates to 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 would 

require comparison of e.g. characteristic sequences [12] or 

geometry information [14], adding a layer of complexity and 

reducing performance. Our DCR method avoids this by 

defining 𝑐 as the number of reflections taken by a ray before 

encountering an observation sphere. We then only calculate 

hits for the nth reflection of all rays simultaneously, resetting 

hitlists before the (n+1)th reflection. Since all entries in 𝐻𝐿𝑖  

correspond to the same 𝑐, our method allows 𝑐 to be ignored 

during DCR. A simple example of how we order our DCR 

method relative to other SBR processes is presented below. 
 

1 for 𝑛 ∈ [1. . 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠] do 

2   initialize 𝐻𝐿𝑖 to empty ∀𝑖 ∈ [1. . 𝑁𝑟𝑎𝑦𝑠] 

3   for 𝑘 ∈ [1. . 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠] do 
4    for 𝑖 ∈ [1. . |𝐶𝑘|] do in parallel 
5     trace 𝑟𝑖 to n

th reflection 

6    compute sphere intersections 

7    fill 𝐻𝐿𝑖 

8  DCR 

VI. RESULTS AND DISCUSSION 

To demonstrate the scalability of the proposed NSA class-

based parallel DCR method and its practical advantages over 

inherently sequential approaches, we produced an efficient 

GPU-based implementation. As a baseline, we also produced 

an efficient but fully sequential CPU-based implementation of 

the method. The CPU-based implementation performs the 

same operations from Section V, but processes only one ray at 

a time, rather than rays in each class in parallel. Both 

implementations used the same parallel, GPU-based SBR ray 

propagation, sphere intersection, and field computation 

implementations, the computation times of which were 

included in the total computation time. We show results using 

the 3- and 4-class icosahedral schemes from Section III, 

denoted Ico3 and Ico4, respectively. Our intention in 

presenting results for both Ico3 and Ico4 here is to 

demonstrate the bottleneck introduced by NSA classes does 

not occur for 3-class or 4-class schemes over the range of 

typical parameters tested (as low as 𝑁𝑟𝑎𝑦𝑠 = 103). Note that, 

since our DCR technique requires fewer operations to detect 

and handle double counts than existing methods, its use as a 

sequential benchmark here likely underestimates the 

computation time of most existing DCR approaches. Also note 

that, with good implementation, no pre-process step is 

required for management of ray class designations. Each ray’s 

class can be determined in constant time from its parent 

triangle index and its indices within that triangle. All results 

were produced on a mid-range (as of 2019) consumer 

workstation equipped with an Intel i7-3770 3.4 GHz CPU and 

an NVIDIA GeForce GTX 1060 6GB GPU with 1280 CUDA 

cores. A 4×4×1000-meter waveguide was used as the 

propagation environment. Since our initial implementation is 

targeted to CUDA-enabled GPUs, we are not able to include a 

strong scaling plot (i.e., scaling with respect to core count) 

since threads are automatically distributed to GPU streaming 

multiprocessors in the CUDA paradigm, offering us little 

control over how many are used simultaneously. We hope to 

present a strong scaling plot in future work once we have an 

efficient CPU implementation. 

Figure 8 shows the computation time taken only by DCR for 

both the sequential and parallel implementations with respect 

to increasing 𝑁𝑟𝑎𝑦𝑠. We chose to test a wide range of 𝑁𝑟𝑎𝑦𝑠  

values that we believe is representative of the range of ray 

counts used for most practical applications. We see vastly 

improved performance and scaling of parallel DCR over the 

sequential implementation, with parallel DCR outperforming 

sequential for all 𝑁𝑟𝑎𝑦𝑠 tested and a maximum observed 

speedup over 300×. We observe the largest speedups for the 

highest 𝑁𝑟𝑎𝑦𝑠 tested, with the speedup for lower ray counts 

likely constrained by host-device communication overhead 

below 𝑁𝑟𝑎𝑦𝑠 = 106. 

Figure 9 shows the fraction of the total computation time 

taken by DCR for each approach with respect to 𝑁𝑟𝑎𝑦𝑠. The 

sequential example takes roughly 50% of the total 

computation time by 100 million rays. The parallel examples, 

meanwhile, take less than 1% of the total time. Measuring the 

time proportionality of DCR is useful because it offers a 

simple, relative comparison of DCR to other important steps 

of the SBR algorithm. Encouragingly, the results of Fig. 9  
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Fig. 8.  Computation time of sequential vs. parallel DCR with respect to 

𝑁𝑟𝑎𝑦𝑠. Other parameters were constant: 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 20, 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 =

500.  

 

 
Fig. 9.  Proportion of total SBR computation time taken by sequential vs. 

parallel DCR with respect to 𝑁𝑟𝑎𝑦𝑠. Other parameters were constant: 

𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 20, 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 500. 

 

indicate that time taken by our parallel implementation is 

asymptotically non-dominant with respect to increasing ray 

count. Furthermore, the fact that Ico3 and Ico4 agree almost 

perfectly shows that no bottleneck is introduced by NSA ray 

classing over the wide range of ray counts tested.  

We also note that the time proportionality peak in Fig. 9 

around 𝑁𝑟𝑎𝑦𝑠 = 106 lends evidence to our belief that non-

asymptotic effects like communication overhead constrain the 

speedup in Fig. 8 below this value.  

 Figure 10 shows similar results to figure 8, but with respect 

to the maximum number of reflections simulated for any given 

ray. We again chose a range of values that we consider typical 

for most practical applications. The parallel examples are once 

again faster in all cases, even at high reflection orders, with a 

maximum observed speedup over 100× for the parameter 

values tested. We note that the observed speedup becomes 

lower at higher reflection orders. We believe this is due to 

memory limitations of our GPU hardware at high reflection 

orders necessitating host-device communication.  

 
Fig. 10.  Computation time of sequential vs. parallel DCR with respect to 

𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠. Other parameters were constant: 𝑁𝑟𝑎𝑦𝑠 = 2,505,000, 

𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 500. 

 

 
Fig. 11.  Proportion of total SBR computation time taken by sequential vs. 

parallel DCR with respect to 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠. Other parameters were constant: 

𝑁𝑟𝑎𝑦𝑠 = 2,505,000, 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 500. 

 

Figure 11, analogous to Fig. 9, shows the proportion of the 

total computation time taken by each example. Although it 

appears in Fig. 11 that asymptotic behavior of the time 

proportionality has begun to dominate (we observe a linear 

trend on the semilog scale by around  𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 100), this 

is unlikely to be the case. The proportion of the total time 

taken by DCR is limited to 1, so the observed trend is 

misleading (all three curves must level out at some point). As 

with Fig. 10, we believe the reduced efficiency at higher 

reflection orders can be attributed to memory limitations of 

our GPU hardware and associated host-device communication 

overhead. 

Figures 12 and 13 are analogous to figures 8 and 9 but with 

respect to the number of field observation points. The parallel 

examples tested for Fig. 12 achieve a maximum observed 

speedup over 10,000×, although this is for very low 

𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 . At high 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 , the observed speedup 

levels out to about 10× on our test hardware. Like Figs. 10 and 

11, we believe the reduced efficiency in Figs. 12 and 13 for  
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Fig. 12.  Computation time of sequential vs. parallel DCR with respect to 

𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠. Other parameters were constant: 𝑁𝑟𝑎𝑦𝑠 = 2,505,000, 

𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 20. 

 

 
Fig. 13.  Proportion of total SBR computation time taken by sequential vs. 

parallel DCR with respect to 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠. Other parameters were constant: 

𝑁𝑟𝑎𝑦𝑠 = 2,505,000, 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 20. 

 

high 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠  is due to host-device communication 

overhead.  

 

VII. CONCLUSION 

This paper has introduced non-self-adjacent ray classes for 

efficient, parallelizable shooting-bouncing-ray tracing double 

count removal. Unlike previous DCR methods, the approach 

made possible by the NSA ray classes introduced in this paper 

can take advantage of modern, parallel computing hardware, 

e.g., GPUs, that was not available in ray tracing’s theoretical 

infancy. Predominantly geometric aspects of SBR like ray 

path computation and ray intersection tests have long been 

efficiently parallelizable, and most modern SBR approaches 

have taken advantage of this. However, the parallel approach 

to DCR enabled by the present work removes the last and final 

barrier to fully parallel, large-scale SBR simulations. This is 

crucial as problem sizes continue to grow, necessitating highly 

parallel and efficient CEM algorithms.  
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