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Abstract—Causal discovery algorithms have been used to
identify potential cause-effect relationships from observational
data for decades. Recently more applications are emerging, for
example in climate science, that extend over large spatial domains
and require temporal models. This paper first reviews how
the causal discovery problem can be set up for such spatio-
temporal problems using constraint-based structure learning,
then discusses pitfalls we encountered and some solutions we
developed. In particular, we consider how to handle temporal
and spatial boundaries (which often result in causal sufficiency
violations) and discuss the effects of temporal resolution and grid
irregularities on the resulting model.

I. INTRODUCTION

Causal discovery theory is based on probabilistic graphical

models and provides algorithms to identify potential cause-

effect relationships from observational data [1], [2], [3]. The

output of such algorithms is a graph structure showing po-

tential causal connections of the observed variables. Causal

discovery has been used routinely in applications in the social

sciences and economics for decades [2], [3]. More recently,

causal discovery has been used with great success in biology

[4] and bioinformatics [5], for example to identify gene

regulatory networks [6], [7], identify protein interactions [8],

[9] and discover neural connections in the brain [10]. In recent

years causal discovery has emerged in many physics-related

applications, including applications in earth science, such as

studying tele-connections in the atmosphere [11], pollution

models [12], precipitation models [13], sea breeze models [14],

and studying the impact of climate change [15].

So far the great majority of causal discovery applications

uses static models with few variables, but a growing number

of applications is emerging that (1) require temporal models

and (2) use a large number of variables extending over large

spatial domains. In this paper we first summarize the key

concepts for using causal discovery for spatio-temporal data.

Then we present pitfalls we encountered and some solutions

we developed over the years while using causal discovery to

learn temporal models from spatio-temporal data.

The remainder of this paper is structured as follows. Section

II provides a quick introduction to causal discovery through

constraint-based structure learning. Section III reviews a little

known extension of standard constraint-based structure algo-

rithms that yields temporal models. Section IV introduces two
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Fig. 2. Direct connections can change into indirect connections when more
variables are included in the model. Both models are correct.

sample applications that are used throughout this paper to

illustrate these concepts. Sections V and VI present pitfalls

that arise when using spatio-temporal data and discuss poten-

tial solutions and Section VII provides some discussion and

conclusions.

II. KEY CONCEPTS OF CAUSAL DISCOVERY

Fig. 1 shows a simple graph indicating causal relationships

between three variables, X,Y, Z . Each variable constitutes a

node in the graph and an arrow from one node to another in-

dicates direct cause-effect relationships between the variables.

For example, for the system in Fig. 1, X is a direct cause of

Y and Y is a direct cause of Z . X also has an effect on Z

through Y , but as such X is only an indirect cause of Z . Thus

there is no arrow connecting X directly to Z in the graph.

In this context directness is a relative term, because it is

always relative to the nodes included in the model. Let us

consider the example of a dog, a room and a ball. Every time

the dog enters the room, it picks up the ball and carries it

somewhere else. So if we use only two variables to describe

this system, Dog, which denotes whether the dog is in the

room, and Move, which denotes whether the ball is moving,
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Fig. 3. Example showing errors caused by omitting a common cause

then the model simply becomes as shown in Fig. 2(a), where

Dog is a direct cause of Move. However, if we also introduce

the variable Carry, which denotes whether the dog carries the

ball, then the model becomes as in Fig. 2(b), where Dog is

no longer a direct cause of Move. Thus, by increasing the

causal resolution of the model, direct connections can turn

into indirect connections. Both of those models are correct

and match our intuitive understanding of causality.

Hidden common causes - also known as latent variables or

confounding variable - are another key concept. We illustrate

them briefly with a very simple example. Let us say we

have three variables, Ice, which describes the amount of

ice left on polar caps (generally decreasing in recent years),

Height, which describes the average height of people on our

planet (generally increasing in recent years), and Y ear, which

represents the year in which the data is taken. The correct

model relating those three variables can be seen in Fig. 3(a),

where Y ear represents the relevant processes taking place

over time and is thus the common cause of changes in the

amount of ice and the average height. However, if Y ear is not

included in the model, the strong anticorrelation between Ice

and Height may be misinterpreted as a direct connection (Fig.

3(b)), leading to the erroneous conclusion that the melting ice

makes people taller, or vice versa. We will return to the topic

of hidden common causes in the following sections.

A. Constraint-Based Structure Learning

We employ the well known framework of constraint-based

structure learning of graphical models [1], [2], [16] for causal

discovery. The specific algorithms we use are the classic PC

algorithm [17], [2] and the PC stable algorithm [18]. PC stable

is a variation of PC and has several advantages, namely (1)

it is order-independent, i.e. the order of variables does not

impact the results; (2) it is more robust, i.e. mistakes early on

cause less follow-up mistakes in the graphs; (3) it is easy to

parallize, thus reducing execution time.

Learning causal structure from data with PC or PC stable

is based on two key facts:

1) We can distinguish between direct and indirect connec-

tions based on observed data using conditional indepen-

dence tests (CI tests);

2) We cannot prove causal connections (primarily due to

potential hidden common causes), but we can disprove

so many connections that only few potential causal

relationships are left at the end.

The basic steps of both the PC and PC stable algorithms are

as follows:

1) We establish a graph, where the observed variables form

the nodes of the graph.

2) First we assume that every variable is a cause of every

other variable (fully connected graph).

3) Then we perform CI tests to eliminate as many connec-

tions as possible (pruning).

4) Whatever is left at the end are the potential causal

connections.

5) Arrow directions are determined (as far as possible) from

additional CI tests, temporal constraints (if available) or

any available prior knowledge.

This procedure yields one or more independence graphs,

which represent the conditional independencies in the data.

B. Conditions for Causal Interpretation

The result of the constraint-based structure learning are

independence graphs and we need to consider under which

conditions these graphs can be interpreted in a causal way.

There are two types of conditions, which are briefly discussed

below (for more details see for example [16]).

1) From data to independence graph: Going from probabil-

ity distribution (data) to independence graph, we have to make

sure that the obtained independence graph actually models the

data well, i.e. that it is faithful to the probability distribution.

This condition roughly translates into the following practical

guidelines: (a) The independence signal must be strong enough

to be picked up by the statistical tests in the presence of noise.

(b) No selection bias is allowed. (c) Probability distributions

must be identical and independent. (d) If the independence

graph is directed, no causal loops are allowed in the system.

If causal loops are present, then a temporal graphical model

should be used instead.

2) From independence graph to causal interpretation:

Going from independence graph to causal interpretation, we

have to make sure that there are no hidden common causes

or other conditions that could cause the independence graph

to misrepresent a system’s causal relationships. The primary

concern is to ensure that the nodes in the graph are causally

sufficient, i.e. if any two nodes X,Y of the graph have a

common cause, Z , then Z must also be included in the

graph. In practice for real-world systems this condition is often

impossible to ensure, typically because some common causes

may be unknown or may be hard to observe. Some algorithms

have been developed that can identify the existence of many

hidden common causes ([2]), but are of high computational

complexity and currently not feasible for large graphs. Recent

advances [19] may change that in the near future.

Our approach is to simply not assume causal sufficiency,

and to interpret the results accordingly. We accept that then

we cannot prove causal connections, but we can disprove so



many connections that only few potential causal relationships

are left at the end. Each one of those relationships may present

a true causal connection, be due to a common cause or a

combination of both.

Evaluation step: Thus we include a final evaluation step in our

analysis. In the final graph, every link (or group of links) must

be checked by a domain expert. If we can find a mechanism

that explains it (e.g. from literature), the causal connection is

confirmed. Otherwise, the link presents a new hypothesis to

be investigated.

When seeking to learn new knowledge from data we have

found that the optimal scenario is to have most links in the

final graph confirmed from literature, thus confirming that the

overall approach is correct, but also having a few unconfirmed

links. The unconfirmed links are crucial, because they are the

only ones that provide new hypotheses of causal connections

and thus potentially new knowledge.

III. INCORPORATING SPATIO-TEMPORAL DATA

A. Incorporating Spatial Dimensions

Spatial dimensions are incorporated by using different vari-

ables, Xi, that represent the quantity of interest at different

locations. If a single type of quantity is considered (e.g.

temperature or wind), then i simply indicates the location

where it is measured. Otherwise some numbering scheme is

used, so that the combinations of quantities and locations can

be referred to as Xi, i = 1, . . . , N . While setting up the

problem seems trivial at first, we will see in Section VI-B that

the spacing between the measurement locations can result in

artifacts in the resulting graphs, so proper spacing - or at least

understanding the potential problems if proper spacing is not

possible - is critical.

B. Incorporating Time

Both the PC and PC stable algorithms can be extended

to learn temporal models from time series data. However,

in their standard form they simply disregard the temporal

component, as follows. Let us assume the time series data

is provided in a matrix with each column representing one

observed variable and each row representing a time step. The

standard PC/PC stable algorithm treats this data as if all

samples are independent, i.e. one can mix up the order of

the rows arbitrarily in the matrix without changing the results.

Thus the algorithm effectively disregards time and treats the

system as a static system, so we call the results static models.

This is sufficient for many applications, e.g. most applications

in economics and social sciences, where causal relationships

last for very long times, and thus the relationships can be

treated as quasi-static.

For our applications in climate science temporal information

typically plays a crucial role, especially when dealing with

daily data. The climate system is very dynamic, with states

at individual locations changing from day to day, interactions

between different locations happening within days, and the

strength of many signals also decaying within days. Therefore

for our applications taking time into account provided much

Fig. 4. Temporal graph from PC algorithm for D = 3 and α = 0.001
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Fig. 5. Summary graph for Fig. 4 summarizing strongest connections

stronger causal signals. In fact, for the applications in climate

science we considered, static models were unable to provide

robust results, and we had to move to temporal models to be

able to identify strong, robust causal signals. We believe the

same to hold for many physical systems in which temporal

order is important. Another advantage of temporal models is

that temporal information helps to establish causal directions.

To incorporate time explicitly into the modeling we use the

approach first introduced by Chu et al. [11], which adds lagged

variables to the model. Since this approach does not seem to be

widely known, we briefly outline it below. Given time series

data for N variables, X1, . . . , XN , the basic approach is as

follows:

1) Choose the distance, D, between time slices, e.g. D = 3
time steps.

2) Choose number of time slices to include, e.g. [−M,M ].
3) Define lagged variables for all i = 1, . . . , N and s ∈

[−M,M ]: Xs
i = Xi lagged by s time slices.

This results in a total of (2M + 1) ·N variables, which

form the nodes of the temporal graph.

4) Add temporal constraints: Causes can only occur

before or at the same time as their effect, i.e.

Xs
i can be a cause of Xt

j only if s ≤ t.

Using this procedure we can express the temporal model with

N time series variables and S = (2M + 1) time slices as a
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Fig. 6. Network plots for Northern hemisphere from PC stable (D = 1 day, α = 0.1) based on Fekete grid (800 grid points) yield meaningful results.

standard static problem with (N · S) variables, plus temporal

constraints. The temporal constraints can be incorporated

in PC/PC stable as prior knowledge, so that the standard

algorithms can now be used to provide a temporal model. The

price we pay for this though is much higher computational

complexity, since we are now dealing with N · S, rather than

N variables. While the worst-case complexity for the PC

algorithm is exponential in the number of variables, in practice,

its complexity depends very much on the application, since its

connectivity properties determine which order of conditional

independence tests are required to eliminate the majority of

the graph edges. Thus in practice the number of calculations

required for the PC algorithm is polynomial in the number of

nodes (e.g. N5), but that means that going from a static to

a dynamic model, say with S ≥ 10, increases complexity by

several orders of magnitude.

It is a little known fact that use of the lagged variables

violates one of the assumptions of constraint-based structure

learning discussed in Section II-B, namely that the probability

distributions should be independent of each other. So far it

seems that this violation does not affect the method at all, since

it works well even in spite of this violation. Nevertheless, this

issue should be studied further, to understand why it works so

well and to ensure that this is always the case. However, that

topic is beyond the scope of this paper.

Finally, we will see later that initialization of the first time

slices is a critical issue, but one that can be resolved easily,

see Section V-A.

IV. SAMPLE APPLICATIONS

We introduce two applications from climate science to

demonstrate the great potential of causal discovery in this area,

and to demonstrate some pitfalls in later sections.

Application 1 - Relationships between compound indices:

We investigated the potential causal connections between four

compound indices that are often used in climate science,

namely the Western Pacific Oscillation (WPO), Eastern Pacific

Oscillation (EPO), Pacific North America Pattern (PNA) and

North Atlantic Oscillation (NAO). Using daily data for those

indices, and using time slices that are D = 3 days apart

and a significance value of α = 0.001 for the conditional

independence tests (Fisher Z-tests), the PC algorithm yielded

the temporal model shown in Fig. 4. Fig. 5 is a summary graph

with the strongest connections from Fig. 4. The numbers next

to the arrows indicate the delay in days from potential cause

to effect (they are multiples of 3, because we used D = 3).

There are a few arrows hidden behind other blocks in Fig. 4.

Namely, each compound index, WPO, EPO, PNA and NAO,

actually affects itself strongly for 3-6 days, as shown in the

self-loops in Fig. 5. For more interpretation, see [20].

Application 2 - Graphs of information flow: One of the most

complex applications of causal discovery in climate science

is to track the pathways of physical interaction around the

globe. In order to do that we define a grid around the globe

and evaluate an atmospheric field (such as temperature or

geopotential height) at all grid points, which provides time

series data at all grid points. Our approach is to then use

the temporal version of PC stable to identify the strongest

pathways of interactions around the globe based on the time

series data [21]. Gaussian graphical models present an alter-

native approach for this purpose [22] and [23] investigates

this and other approaches. No matter which method is used,

the key idea is to interpret large-scale atmospheric dynamical

processes as information flow around the globe and to identify

the pathways of this information flow (physical interactions)

using causal discovery.

Figure 6 shows a sample network plot obtained for geopo-

tential height at 500mb for boreal winter months (Dec-Feb)

of years 1950-2000 (using daily NCEP-NCAR reanalysis data

[24], [25]) using PC stable with D = 1 day between time

slices and significance level α = 0.1. Fig. 6(a) shows the

strongest direct connections that take significantly less than



1 day to travel from cause to effect, while Fig. 6(b) shows

the strongest direct connections taking about 1 day. These

graphs were obtained by first generating temporal graphs

(similar to that in Fig. 4 for Application 1), then converting

them to summary graphs (similar to Fig. 5 for Application 1)

summarizing the strongest connections. It turns out that the

interactions captured by this particular graph are storm tracks,

and the pathways shown in this graph cannot be obtained by

traditional climate science methods. Thus these plots reveal

new information not available through existing methods. For

detailed interpretation of this type of graph, see [21].

In general, which physical processes are tracked in the

network depends primarily on two factors: (1) the atmospheric

field used and (2) the time scale (e.g. daily data vs. monthly

data). Thus using a variety of different atmospheric fields

we can track the causal pathways of a variety of different

dynamical processes around the globe using this approach.

V. ISSUES RELATED TO BOUNDARIES

As discussed in Section II-B2 there are incidences where

we cannot avoid violating causal sufficiency, have to accept

that fact and deal with the consequences in the evaluation

step. However, there are also many instances where one may

happen to violate causal sufficiency that can be avoided. The

two primary situations we came across are described below.

They both have to do with introducing artificial boundaries -

either in time or in space - in the modeling process. Those

boundaries cut nodes off from their neighbors in the system -

neighbors either in terms of time or space.

A. The Initialization Problem in Temporal Analysis

When using a temporal model, the model usually needs a

few time slices to converge to a proper independence model.

The reason is an initialization problem; namely, to determine

the causal flow originating in a time slice, it is crucial to have

information on the causal flow into that time slice. Since the

first few time slices are lacking that information - because

no prior time slices are included - they often yield erroneous

links. This can be interpreted as a causal sufficiency problem:

for the nodes in the first few time slices the common causes

in any prior slices are not included, thus violating the causal

sufficiency condition to an extend that renders the first few

slices useless.

This problem is easily solved by developing the model

for more slices than needed and then deleting the first few

slices in the results. How many slices should be deleted is

usually obvious from the resulting graph because the first

(erroneous) slices usually differ significantly from the stable

pattern emerging in the later slices. In theory, the number of

slices to be deleted depends on the maximal duration of the

major connections in the network, i.e. if direct connections

extend over up to P time slices, then up to the first P time

slices may be compromised. In practice, the number of slices to

be deleted is often lower than P . For example, in Application

1 we had to delete only the first three slices (representing 9

days) to obtain the graph in Fig. 4, and for Application 2 we

deleted just the first slice (representing 1 day), although some

connections last several days.

Although time is cut off at the beginning and the end of

the model, we only need to consider the first time slices for

deletion, never the last ones. The reason is that we need to care

only about having neglected incoming connections (hidden

common causes) and causes can only occur before effects.

B. Dealing with Spatial Boundaries

When modeling a real-word system one sometimes may

want to focus only on a spatial subset of the whole system,

e.g. a geographic region such as North America. When doing

so one must be aware that the same effect that is happening

in the temporal domain also applies in the spatial domain.

For example if using only grid points in a selected region,

which is a subset of a much larger region, the grid points on

or near the boundaries of the selected region are cut off from

their interactions outside of it, thus potentially violating causal

sufficiency.

In determining which slices on the boundaries have indeed

to be deleted it is important to look at the direction of causal

interactions for the system under consideration. Just like we

only had to worry about the first time slices potentially being

compromised in the temporal initialization problem (Section

V-A), a similar effect exists in the spatial domain. For example,

if we only want to look at a rectangular region of the earth,

and we know that for the variables under consideration we

know that causal connections occur generally from SE to NW

direction, then we only need to consider deleting slices from

and near the Southern and the Eastern boundaries.

Taking this effect into account is particularly helpful in

climate science applications where the prevalent direction of

atmospheric flow greatly reduces which boundaries may be

compromised. In Application 2 the grid spans the whole globe,

so we did not have to worry about cutting off neighbors, but we

recently extended that model to the third dimension, using data

from several geopotential height layers and therefore using a

3D grid [26]. Since we can only include a finite number of

height layers, we have to consider that the highest and lowest

layers may be compromised. The results often reveal primary

directions of cause-effect flow which indicate that only certain

layers may be compromised (either the highest or the lowest)

- or sometimes none at all, if the primary connections near the

boundary planes are mainly horizontal.

VI. ISSUES RELATED TO SPACING AND SIGNAL STRENGTH

Now we focus on two types of issues that can occur

anywhere, not just at the boundaries, and that have nothing to

do with causal sufficiency, but instead with signal strength and

the fact that causal discovery only picks up the very strongest

connections for each node.

A. Effect of Temporal Resolution

Choosing the distance, D, between time slices determines

the temporal resolution of the model. If temporal resolution is

very high, it can happen that the autocorrelation relationships,
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i.e. connections from a variable in one time step to the same

variable in later time steps, dominate the network. The reason

is that the causal discovery algorithm for each node only

identifies the very strongest connections - and only a limited

number of those. Thus if each variable state has a strong

influence on the state of the same variable for several time

slices and the distance D between time slices is chosen very

small, then the auto correlation relationships sometimes are the

only ones to show in the graph. The problem can usually be

solved by choosing a larger value D between time slices, thus

reducing how many auto-correlation connections can make it

into the strongest connections. Choosing D very large on the

other hand causes the model to miss connections that have

short duration from cause to effect (shorter than D), so there

is usually a trade-off involved when choosing D.

In Application 2 choosing D = 1 day worked fine (Fig.

6), since the strongest interactions all happen within 1 day

anyway. However, in Application 1, if we increase temporal

resolution so that each time slice represents 1 day (D = 1),

we obtain the summary graph shown in Fig. 7, which is

rather boring. While it provides more detailed information

about the duration of self-loops (1-5 days for most indices),

it does not tell us much about the connections between the

different variables. Choosing D = 3 (Fig. 5) yields much more

interesting results. Both models, Fig. 5 and Fig. 7, are correct

in the sense that they show the strongest connections between

the set of variables included in the model. Nevertheless, Fig. 5

is more useful to answer questions about connections between

different compound indices than Fig. 7. The lesson to learn

from this is that to make sure the model answers the right

question it is crucial to carefully choose which nodes to

include in the model - including temporal resolution.

B. Effect of Irregular Spacing of Grid Points

In this section we consider the impact that irregular grid

spacing can have on the resulting graphs. To demonstrate the

concepts we use the example of discretizing the globe, but

the conclusions drawn apply to other applications as well, e.g.

wherever data is available only on irregularly spaced locations.

Discretizing the globe - or unit sphere - is particularly

tricky, because most parametrizations have a singularity near

the poles. Climate scientists thus use a great variety of different

grids, depending on the purpose of the model. The simplest

- and probably most common - type of grid splits the range

of longitude ([0o, 360o]) and latitude ([−90o, 90o]) angles into

equal increments. This type of discretization works well near

the equator, but creates a very dense grid near the poles, which

often creates irregularities, e.g. in numerical calculations.

A common solution is to use some type of equal area grid,

i.e. a grid where the area belonging to each grid cell is about

the same. A very simple implementation of an equal area

grid, used for demonstrative purposes here, is to use circles of

latitude (circles parallel to the equator) at equal distances, and

then to place a varying number of grid points on each circle1.

This type of grid is used in Fig. 8, where the grid points are

shown as small black circles in Fig. 8(b). This grid results

in a large number of points on circles near the equator and

decreasing numbers on circles closer to the poles. While equal

area grids guarantee that the area of each grid cell is (nearly)

identical, the shape of the cells can still differ - e.g. where cells

are nearly rectangular and become squished near the poles -

which means that the distance between neighboring points can

vary greatly. Furthermore, in this simple implementation, since

the number of grid points on each circle must be an integer, we

have to round the number of points and thus create additional

geometric irregularities. A strong irregularity in Fig. 8(b) is

near the equator, where grid points over Africa (0o longitude)

line up along straight lines toward the pole, while grid points at

the opposite site of the globe (180o longitude) form hexagonal

groups instead.

Geodesic grids achieve nearly perfect regularity of cell

geometry and area and are sometimes used in climate science.

However, geodesic grids only come in few resolutions, namely

the number of cells can only be one of the following: 42,

162, 642, 2562, 10242, etc., which limits their use. There

is no closed form solution to determine a grid on a sphere

with any desired number of points and where neighboring

grid points have equal distance. However, there are excellent

approximations, namely Bendito et al. [28] developed an

algorithm to calculate any number of Fekete points, which are

nearly equally spaced around the globe. This method yields

grids that are extremely regular, where most cells are nearly

regular hexagons (just like in a geodesic grid), and just a few

are nearly regular pentagons.

1) Sample results for different grids: Figures 6 and 8 show

results obtained using the same data (see Section IV), but

Figure 6 uses a Fekete grid with 800 points and Figure 8

uses the simple implementation of the equal area grid with

918 points. The results in Figure 6 are physically meaningful,

since they show information flow in form of storm tracks

(Section IV). However, what happened in Figure 8? Fig. 8(a)

should look similar to Fig. 6(a) and Fig. 8(b) to Fig. 6(b), but

clearly they do not. The most striking effect can be observed

in 8(a) near the equator, where it seems as if information

flow occurs in straight lines over Africa (0o longitude), but

1Climate scientists often use more sophisticated equal area grids, see for
example Leopardi [27] which generates much more regular cells. However,
the simple implementation is perfect to demonstrate the problems that can
arise from irregular grid spacing.
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Fig. 8. Network plots from PC stable (D = 1 day, α = 0.1) based on simple implementation of equal-area grid (918 grid points) yield strange results.

in hexagonal patterns at the opposite site of the globe (180o

longitude). Obviously, physical processes are unlikely to occur

in such patterns, and indeed this pattern matches exactly the

irregularities of the equal-area grid discussed above. In fact

this is purely an artifact due to grid irregularities, namely any

two grid points that are unusually close to each other in this

grid are connected in the resulting network!

2) Interpretation of Results: These results raise the fol-

lowing question - why does the proximity pattern in the

irregular grid have such an overwhelming effect on the network

connections? The reason is as follows. Using causal discovery

we seek to identify the very strongest connections between

grid points. Signal strength of most atmospheric processes

decays quickly with increasing distance, so that points that

are unusually close to each other are more likely to appear

strongly connected. Thus the unequal proximity in this grid

creates a stronger connection between those grid points than

the actual causal pathways we wanted to identify. We believe

that this behavior is likely to occur for many physical systems,

not just those related to our planet’s atmosphere.

One may think that this issue could be solved by increasing

the grid resolution. However, unless the spacing is more reg-

ular, the problem persists even if grid resolution is increased,

since any point pairs that are unusually close always dominate,

regardless of scale.

What exactly prevents these effects from happening in the

Fekete grid (Figure 6)? Every Fekete point has six (sometimes

five) nearly equally distant points to choose from as closest

neighbors, so there is no bias in any of those directions,

because they are all at the same distance. Thus choosing

a regular polygon as cell structure is the key to avoiding

artifacts, by making the grid as isotropic as possible.

Just like the models from varying temporal resolution in

Section VI-A, the results in Figure 8 are actually correct

in terms of identifying the strongest connections between the

nodes included in the model. So, again, the lesson to learn

is that in order to answer the question we are interested

in, we need to carefully select the nodes to include in the

model. Namely, in order to identify the pathways of global

information flow, we need to make sure to remove any bias of

direction between neighboring points, i.e. use isotropic grids.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have identified a number of issues that

are unique to causal discovery with spatio-temporal data and

established the following connections:

1) The initialization problem and the spatial boundary

problem are both effects with the same origin, violation

of causal sufficiency, and can both be addressed in the

same way. Namely, one has to develop the model for

more time slices/boundary layers than required, then

check causal flow directions to identify which of them

may have been compromised and should be deleted.

2) The effect of temporal resolution and irregular spacing

of grid points both have the same origin, namely the fact

that we can only pick up the few strongest connections

for each node and that causal connectivity is a relative

concept that changes with spatial/temporal distance.

Specifically, if we choose D very small autocorrelations

may dominate, as seen in Application 1, and hide

the relationships between different variable types (here

compound indices). Similarly, if a grid with irregular

spacing is chosen, then proximity in the grid becomes

the dominating signal and hides the actual spatial path-

ways of causal interaction.

The issues described as Item 2 above (and in Section VI) are

not due to any errors in the method of causal discovery - in

fact the models were all correct given the way the problem

was set up. Instead, the issues arose from the fact that (due

to unequal spacing or for certain temporal resolution) the

problem set-up does not actually address the question we were

interested in - namely the pathways around the globe or the



interaction between different compound indices. This implies

that the pitfalls in Section VI are inherent to the problem

set-up, not the method used, and are thus likely to occur -

at least to some extent - also when other methods are used

for causal discovery, such as Granger graphical models or

Gaussian graphical models.

There are many potential applications of causal discovery

in spatio-temporal systems and many of those also have to

deal with irregular grids. For example, the locations of sensor

networks are often irregular, as are the locations of neurons

in the brain. Thus future work should look for ways to

compensate for irregular grids, if the irregularities cannot be

avoided. In constraint-based learning, for example, one could

raise the threshold for the statistical tests for certain variable

pairs - e.g. those pairs representing locations unusually close

to each other or variable pairs representing autocorrelation -

thus effectively providing a handicap for those pairs and thus

reducing their dominance in the results. However, that is a

tricky task, since it is hard to come up with schemes to adjust

the threshold for variable pairs that do not introduce any new

artifacts.

In conclusion, causal discovery for temporal models is a

powerful framework with many applications. In this paper we

have highlighted a number of pitfalls that must be considered

when developing such models from temporal data and many

kinks are still to be worked out. Nevertheless, it is exciting

to see the great potential of these approaches for speeding up

the process of discovery in areas ranging from earth science

to bioinformatics.
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