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1 Introduction

Causal discovery is the process ofidentifying cause-and-effect hypotheses from observational data. The
purpose of this document is to demonstrate the great potential of using causal discovery algorithms in climate
science, by showing how they can be applied for two climate science applications.

2 Technical Approach

We use the framework of probabilistic graphical models developed by Pearl [1] and by Spirtes et al. [2].
Specifically, we use algorithms for constraint-based structure learning, such as the PC algorithm developed
by Spirtes and Glymour [3] and modifications thereof that deal with temporal data. The PC algorithm
generates one or moregraph representationsthat describe the potential causal pathways in the system. At
the core of this algorithm areconditional independence tests that allow us to distinguish between direct
and indirect causal connections. Causal discovery of this type has already been applied with great success
in disciplines ranging from the social sciences to computer science, engineering, medical diagnosis and
bioinformatics.

3 Limitations

There are certain limitations to the interpretation of the causal graphs [1,2,4], the most important one dealing
with potential hidden common causes. Namely, we need to consider the possibility that any link detected
by the PC algorithm may either present a direct causal connection, be due to a hidden common cause, or
a combination of the two. Thus we call the results from the analysiscausal hypotheses, and they must be
tested one by one by a domain expert. The contribution of this causal discovery process is therefore to
reduce the number of causal hypotheses to a manageable set that can then be tested by a domain expert.

4 Application 1: Four-mode example

We applied our method to derive hypotheses of causal relationships between four prominent modes of atmo-
spheric low-frequency variability in boreal winter including the Western Pacific Oscillation (WPO), Eastern
Pacific Oscillation (EPO), Pacific-North America (PNA) pattern, and North Atlantic Oscillation (NAO) [5].
Figure 1(a) shows a summary of the relationships we found, with numbers along links providing delays in
days. To generate Figure 1(a) we used a temporal model with D=3 days between time slices, i.e. the only
possible delays are 0, 3, 6, ..., 30 days. (For results using D=1 and D=2 days and further discussion, see [5].)

It is found that WPO and EPO are nearly indistinguishable from the cause-effect perspective as strong
simultaneous coupling is identified between the two. In addition, changes in the state of EPO (NAO) may
cause changes in the state of NAO (PNA) approximately 18 (3-6) days later. These results are consistent
with previous findings on dynamical processes connecting different low-frequency modes (e.g., interaction
between synoptic and low-frequency eddies), and provide the basis for formulating new hypotheses regard-
ing the time scale and temporal sequencing of dynamical processes responsible for these connections. Thus
the results are consistent with effects reported in current literature, but some of the time scales obtained are
new and have not yet been validated.
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Figure 1: Summary graph for four-mode problem (a) and snapshot of causal-discovery climate network (b).

5 Application 2: A New Type of Climate Network

The basic idea ofclimate networksis to use atmospheric fields - or other physical quantities - to define a
network of nodes, where each node represents a point on a global grid. In a traditional correlation-based
climate network two nodes are connected if the cross-correlation of the data associated with those two nodes
is beyond a threshold. We recently used causal discovery methods to define a new type of climate network.
The key idea is to interpret large-scale atmospheric dynamical processes asinformation flowaround the
globe, and to identify the pathways of this information flow using causal discovery. Whilecorrelation-based
climate networks focus onsimilarity between nodes, this new method provides an alternative viewpoint by
focusing oninformation flowwithin the network over time [6].

Figure 1(b) shows a sample network result based on daily values of 500 mb geopotential height over
the entire globe for boreal winter during the period 1950 to 2000 using NCEP-NCAR reanalysis data. We
useFekete points[7] as grid points to obtain an equally spaced grid around theglobe. Fig. 1(b) shows the
strongest pathways of information flow happening within a single day - and is just one of a series of figures
we would look at for such a network. Results suggest that synoptic-scale, sub-weekly disturbances act as the
main information carrier in this network. We also define a variety of network measures, e.g. we can measure
for how many days information of the initial geopotential height value at a grid point can still be significantly
felt at the same grid point (local memory), or for how long it can be felt at other grid points (remote impact).
This new approach serves as a tool to better understand certain dynamic processes of the earth’s climate. For
example, comparing boreal summer and winter we found a poleward retreat of synoptic-scale disturbances
in boreal summer, which is largely responsible for a corresponding poleward shift of local maxima in local
memory and remote impact, most evident in the North Pacific sector. For the NH as a whole, both local
memory and remote impact strengthen from winter to summer leading to intensified information flow and
more tightly-coupled network nodes during the latter period [6]. We are currently exploring the changing
characteristics of atmospheric information flow in a warming climate, by applying climate networks to the
output of GCM models for current and future climate projection.

Conclusions Causal reasoning has tremendous potential to generate causal hypotheses from data that do-
main experts can then investigate further. We hope to have stimulated more interest in this exciting area.
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