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Abstract—Climate and Earth research seeks to identify
causal relationships without the advantage of experimen-
tal controls. Algorithmic methods for that purpose have
a long history and have developed rapidly in the last
quarter century, so that new methods appear almost
monthly. Unsurprisingly, these products vary in accuracy,
informativeness, quality of implementation, and necessary
assumptions. Researchers need a guide and implementa-
tion of well-vetted causal search methods and a means to
test and compare methods on real and simulated data. We
review the TETRAD suite of programs for these purposes,
available from the Pittsburgh/Carnegie Mellon Center for
Causal (http://www.phil.cmu.edu/tetrad/).

I. MOTIVATION

Causal inference without experimental control is in-
dispensable in climate science and has a distinguished
pedigree in other sciences: Newtonian gravitational
theory and Darwinian evolution were established almost
without experiment. Early in the 20th century, Gilbert
Walker [1] demonstrated the practical possibility of
establishing causal connections from correlations of
climate phenomena. But even earlier, George Udny
Yule [2], [3] described some of the foibles of causal
inference from time series. The ambition to develop
large-scale causal modeling of climate faces a number
of difficulties. For example, the processes of interest are
often undersampled; there may be unmeasured variables
that create associations among measured variables; time
series may be non-stationary and non-linearities may
exist; correlation is insufficient, etc. Similar problems
arise in neuropsychological measurements (e.g., fMRI),
in economics, and elsewhere.

Statistical and computational research since the
1990s has considerably expanded the scope of circum-
stances in which causal inferences based on background
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knowledge and observational data are feasible. The
result is a plethora of competing methods claiming to
extract causal information from equilibrium data or time
series, and applications, with many papers attempting
to infer dynamic relations of climate indices, or local
and global fields of temperature, pressure, precipitation
and other variables, from geospatial time series mea-
surements.

An investigator wishing to apply a search method to
identify causal climate processes is faced with a very
large number of alternative procedures distributed over
many websites and programming languages, only some
of which have proofs – largely confined to technical
papers – of large sample (asymptotic) correctness and
many of which do not. These many methods may give
very different results on finite samples.

Many of these methods have relied on inferences to
conditional independence and dependence by adapta-
tion of correlation and partial correlation to time series.
Granger’s method [4], for example, tests for partial
regression or partial correlation of Yt on Xt−n, control-
ling for Yt−n, Zt−n, where Z variables are covariates
and n indexes all lags up to some number, n. Elab-
orations of Granger’s method have attempted to iden-
tify ”contemporaneous” causal connections (i.e., those
occurring faster than the sampling rate). Subsequent
”Bayes net search” methods [5], [6], [7], [8], [9], [10],
[11] allow the possibility of latent confounding and
sample selection bias. Other recent methods have used
penalized regression, such as LASSO [12]. Procedures
can rely on explicit hypothesis tests of vanishing partial
correlations or via methods that score models implicitly
on conditional independence properties evidenced in the
data [13], [14].

Still more recently, flexible methods have used non-
Gaussianity of the signals to infer causal connections
from time series [15], [16], [17], [9]. These procedures
can give causal information when conditional indepen-
dence methods based only on second moments of distri-
butions are uninformative. Procedures are available for
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identifying changes in distributions over time, the num-
ber of component distributions in mixed distributions,
and sorting cases among component distributions.

Among these many model search methods are those
that do and those that do not tolerate unmeasured com-
mon causes of measured variables (”latent” variables);
non-stationarity; non-linearities or multiple data types
(continuous and discrete). There are dozens of proposed
algorithms, and for some of them there are multiple
implementations of differing quality [18]. Some, but
not all, of these methods have large sample correctness
proofs, but analytic finite sample error probabilities are
in general not possible. Accuracies of search methods
must therefore be assessed by the agreement of their
data driven results with known relationships. Published
rigorous comparisons of search algorithms are few.

Altogether, a climate researcher has good reason
to be perplexed as to which methods to use for a
problem. Perhaps the best way to choose a model
search procedure is to test multiple methods on sample
data with known cause-effect relations, either with
empirical data or simulated climate data. That would
require considerable literature searching, programming
and result analysis. What is needed is a facility that
collects the best available algorithms, allows users
to add algorithms as desired, to simulate time series
or equilibrium data from user specified models, and
to compare accuracies of multiple algorithms on any
appropriately formatted data set for which a true model
is assumed. To that end we review the TETRAD suite
hosted by the Pittsburgh/Carnegie Mellon Center for
Causal Discovery.

II. METHOD

The TETRAD program, developed over 20 years,
is a drag and drop suite of procedures for analyzing
data for causal relations that allows: uploading raw
continuous or covariance or correlation or categorical
data, or datasets having both continuous and categori-
cal variables, including time series data; searching for
structural relations with more than a dozen well-tested
algorithms, including some for time series; specifying
prior knowledge to constrain the searches; manipulating
data by imputing missing values, logging, discretizing,
merging, etc.; creating a statistical model step by step
from graph to parametric family to values of the model
parameters, including a wide range of linking functions
and a variety of probability distributions, and allow-
ing unmeasured confounders; simulating data from a
statistical model; estimating parameters from real or
simulated data; predicting the effects on other variables

of interventions or perturbations on one or more vari-
ables; and computing the probability distribution of any
variable conditional on specified values of any other
set of variables. Some routine descriptive statistics are
available, for example histograms, normality tests and
correlations or covariances. TETRAD has already been
used extensively for causal discovery in climate science,
e.g., the results in [19], [20], [21], [22], [23] were
obtained using TETRAD.

TETRAD is a general causal discovery software
which so far does not contain functionality specific to
the earth sciences. Thus, the typical overall workflow
for the use of TETRAD is to 1) pre-process data out-
side of TETRAD (e.g., detrending, spatial aggregation,
season selection); 2) read the preprocessed data into
TETRAD using its GUI; 3) perform additional data
manipulation and causal model searches in TETRAD;
4) get a first graphical representation in TETRAD that
is extremely useful for trouble shooting; 5) export
either the graph image or the graph edges as a text
file from TETRAD; and 6) perform post-processing
outside of TETRAD, e.g., to visualize connections with
underlying geographic information.

Once inside TETRAD, the design of the program
produces a flow chart between boxes that the user
inserts, see Fig. 1 for an example. Each box contains
a list of pertinent functions from which the user can
select. Information produced in an ancestor box flows
to its descendant boxes.

Fig. 1 shows a session from a recent exploratory
analysis of the interactions between midlatitude jet-
stream speed (N1), Arctic temperature (N2) and jet-
stream latitude (N3), based on observed time series of
N1, N2 and N3. (See [24] for a concise definition
of the variables.) The session in Fig. 1 is included
here solely for demonstration purposes, not to draw
scientific conclusions for this application. To be
able to capture time-delayed relationships, we use the
original variables and 10 lagged copies, denoted by
their start times times, T0 to T10, and resulting in a
total of 33 variables in the model.

The data box, shown in yellow in Fig. 1, contains the
data, which are read from a plain text input file. The
knowledge box, also in yellow and below the data box,
establishes the temporal order of the lagged variables,
and enforces that effect can never occur before their
causes in the models. (The knowledge box can also be
used to add any other prior knowledge.) With the data
read and the temporal order established, we can then
feed these two boxes directly into causal model search
boxes, which represent different search algorithms, such
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Fig. 1. A sample TETRAD session analyzing the relationships between three time series variables using different model search algorithms.
In the graph on the right a green arrow indicates a direct connection; a blue arrow indicates that the connection may be direct or through
some other variables; a double-headed arrow indicates that the association is confounded by one or more unmeasured common causes.
The first few times slices (e.g., T0,T1) are often discarded, because they may contain erroneous edges due to convergence issues [20].

as PC stable, FCI and GFCI. (PC stable performs
causal discovery assuming that there are no hidden
common causes, while FCI and GFCI search for causal
structures that include latent variables.) Following the
workflow further to the right, each causal model search
box is followed by a graph box, which automatically
generates a graphical representation for the result of
each model search. Double clicking on any box opens
it, to view and modify its content, e.g., parameters for a
model search or resulting graphs. The result of double
clicking on the FCI graph box is shown on the right
in Fig. 1, which shows the graph structure obtained by
FCI for this case.

As demonstrated here, the interface allows branching
at any point, so multiple models and data sets can be
generated or analyzed in a single session, and the user
has a visual trace of the steps taken. Sessions can be
saved at any stage and shared with others. This fact,
along with the graphical nature of the toolbox, makes it
very easy for collaborators to follow all analysis steps
and to modify or add to these steps, making this an
excellent tool for collaborations and for promoting
reproducibility of any analysis.

Some of the search algorithms are very fast and can
be run on very high dimensional datasets with small or
large sample sizes. The FGES algorithm, for example,

has been run (with very accurate results) on data from
a sparse structure with one million variables, requir-
ing about 12 hours on the Pittsburgh Supercomputer
[25]. Other procedures (for example, some searches
with non-Gaussian distributions) are much slower and
limited in practice to smaller sample sizes (e.g, not
much more than a thousand) or numbers of variables
(again, not much more than a thousand). FASK is a
recent non-Gaussian procedure which is very fast and
robust against measurement error.

The TETRAD program is continuously being up-
dated with new, well-tested algorithms, additional fa-
cilities and, of course, bug corrections. Help by email
is available, as well as an online manual. Video tu-
torials are in production. Issues, problems and bugs
can be posted on the GitHub issues link for TETRAD.
Investigators who wish to introduce new algorithms
into their own GitHub branch of the software and who
need guidance should email Joseph Ramsey, jdram-
sey@andrew.cmu.edu.

Current work aims to allow flexible comparison of
new algorithms and easy introduction of new simula-
tions or real data into the comparisons. Procedures for
further automating algorithm comparisons on real or
simulated data are being built. Ramsey and Malinsky
have designed a procedure for comparing simulation
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results, and an accompanying interface has been im-
plemented (http://www.pitt.edu/∼bja43/causal/#!/load).
The facility has been used to study a range of time se-
ries methods, finding that several vector autoregression
methods perform poorly when processes are undersam-
pled, that non-Gaussian methods work best when there
are even small non-Gaussian components to the distri-
butions and are more robust to measurement errors.

All of the TETRAD software is open source JAVA
code and is available on GitHub. It can be modified
or tailored to the user’s wishes and code improvements
and suggestions shared. TETRAD is available directly
from the GitHub repository, or from the Tools on the
Center for Causal Discovery website, and can be called
from R or from within Python. The only other software
required is up-to-date Java.

III. CONCLUSIONS

The TETRAD suite is usable now for various climate
study problems, but it is not complete, and with con-
tinuing algorithmic developments, is inevitably a work
in progress. The authors welcome and solicit guid-
ance from climate scientists concerning algorithmic
needs, interface requirements, data sets and other
relevant issues. Please send your feedback to Clark
Glymour (cg09@andrew.cmu.edu) and Joseph Ramsey
(jdramsey@andrew.cmu.edu).
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