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Abstract—Identifying causal interactions in the pres-
ence of hidden common causes (latent confounders) is
a well known challenge for causal discovery in climate
science applications. In this exploratory investigation, we
look into the suitability of a temporal extension of the
Fast Causal Inference (FCI) algorithm, which is designed
to identify latent confounders, for applications related
to climate. The results from the initial experiments on
synthetic and real world data show potential of this
method being useful for climate applications. However,
some apparent limitations of this method also indicate
the necessity of a detailed suitability analysis prior to
application.

I. INTRODUCTION

The Earth is a complex system with many physical
processes causally interacting with each other across
space and time. Discovering these causal interactions
can help to get a deeper understanding of the mech-
anisms governing the Earth’s climate, which (for ex-
ample) can be useful to create skillful climate/weather
prediction models, to find the strongest causal pathways
linking responses to climate change, and to anticipate
the effects from altered atmospheric and oceanic flow
patterns that may result in changing frequencies of
extreme weather events. The most reliable approach to
identify causal interactions is through an intervention
study. However, as the ability to intervene in the climate
system is extremely limited we often need to resort to
observational studies. As causal interactions cannot be
proved through an observational study, mainly due to
the potential existence of latent variables, any interac-
tion identified will only be a hypothesis of a potential
causal interaction that needs to be further evaluated by
climate scientists.
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One popular approach to causal inference in climate
science is based on Granger causality [1], [2]. A more
recent approach, which is the one considered here, is
based on Pearl causality [3], [4], which represents the
causal structure among climate variables as probabilis-
tic graphical models [5], [6], [7]. In these models,
the climate variables are presented as vertices of a
graph and the causal interactions are represented as
graph edges. Constraint-based structure learning meth-
ods, such as the PC [4] and PC stable [8] algorithms,
have been used to infer causal hypotheses in the climate
[6], [7], using a temporal extension [5], [9] of the
original method to be able to model delayed causal
connections.

One of the biggest limitations of standard methods
is that they assume causal sufficiency. That is, they
assume that there are no hidden common causes (latent
confounders), i.e. that every common cause of any two
or more variables is already included in the model.
Causal sufficiency is a very strong assumption that
is often violated in climate applications. Firstly, we
can only make an educated guess of the variables that
need to be included in the model, resulting in a high
risk of missing hidden common causes. Furthermore,
it may be impossible to measure the exact variable of
interest and we may need to resort to proxies of those
unmeasured variables. The results from these methods
must therefore always be interpreted with caution -
namely, any connection found can be a true causal
connection, be due to a latent variable, or both.

On the Granger causality side there have been some
first efforts to infer causal structure in the presence
of hidden variables in climate settings [10], [11]. On
the Pearl causality side, algorithms for inferring hidden
common causes exist, but to the best of our knowledge
none of them have been tested for climate applications
and their suitability is yet to be determined. Primary
algorithms are the Fast Causal Inference (FCI) algo-
rithm [12], [4], and tsFCI [13], which is an extension of



SAMARASINGHE, BARNES, EBERT-UPHOFF

FCI for time-series data that enforces that the identified
causal structure is time invariant. In this initial study,
we choose to focus on a temporal extension of FCI,
rather than tsFCI. The reason is that, as will be seen in
Fig. 4, we sometimes encounter intermittent edges that
are present in some time steps but not in others, and
those cannot be easily identified as such using tsFCI.

II. FAST CAUSAL INFERENCE (FCI) ALGORITHM

FCI is a constraint-based structure-learning algorithm
that is expected to give asymptotically correct informa-
tion about the causal structure even in the presence of
hidden common causes [4]. It builds on the classic PC
algorithm, but it does not assume a causally sufficient
model (unlike PC). Following similar steps to PC, FCI
first represents all the observed variables as nodes in a
fully connected undirected graph, where each variable
is initially assumed to interact with every other variable.
Then it uses conditional independence tests to remove
as many edges as possible. An edge between two nodes
X and Y is removed whenever the two nodes are inde-
pendent conditioned on any subset of vertices adjacent
to X or Y (aka a conditioning set), thus indicating that
there is no direct connection between the two nodes.
The conditioning sets that lead to the removal of edges
are stored and used in the orientation phase of the
algorithm. Once the initial skeleton is uncovered, the
first step is to orient triples of variables adjacent in the
format X – Y – Z (i.e., X is adjacent to Y and Y is
adjacent to Z, but X is not adjacent to Z). These edges
are oriented as X → Y ← Z (a V-structure) if Y is
not in the conditioning set of X and Z. In contrast to
PC, the FCI algorithm goes on to further refine the
initial skeleton to identify and replace some of the
spurious direct interactions that are due to previously
unmodeled latent variables. The refined final skeleton
is then reoriented using V-structures and additional
orientation rules [4], [14], [15]. The graphical model
produced by FCI is called a partially oriented induced
path graph or a partial ancestral graph [15]. In addition
to the uni-directed edges used in PC, this graphical
model uses new arrow symbols to express the presence
of latent confounders. For example a bi-directed edge
between two variables, X ←→ Y, indicates that there
is a latent confounder of X and Y. Whereas, a circular
symbol represents ambiguity. X o→ Y indicates either
X → Y or X ←→ Y (or both). See [4] for details.

III. EXAMPLES

As a first test for the suitability of FCI for climate
applications, we carry out a few initial experiments.

We use a temporal extension of FCI, as implemented
in TETRAD [16], [17], a free software package.

A. Synthetic Example

We first simulate the time series of two observed vari-
ables, X and Z, in the presence of a latent confounder,
Y. Fig. 1 shows the true causal structure of X, Y and
Z.
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Fig. 1. The true causal structure of X, Y and Z, shows that X and
Z are connected solely through the latent variable, Y. Throughout
this paper a dashed circle indicates a latent (unobserved) variable,
while a solid circle indicates an observed variable.

The time series for this example are generated based
on Eq. (1)–(3), where ex, ey and ez are standard normal
errors:

latent: y(t) = 0.4y(t−1) + 0.1ey(t), (1)

obs: x(t) = 0.4x(t−1) + a1y(t−1) + 0.1ex(t), (2)

obs: z(t) = 0.4z(t−1) + b1y(t−1) + 0.1ez(t), (3)

Each auto-correlation term above has a parameter of
0.4, and noise of 0.1, while for the cross-connection
parameters, (a1, b1), we consider three cases:

Case 1: a1 = b1 = 0.3 (medium strength)
Case 2: a1 = b1 = 0.4 (as strong as auto-corr.)
Case 3: a1 = b1 = 0.1 (as weak as noise)

For each case we now seek to recover the causal
structure based on the simulated data for only X and Z.
We use both the PC stable and FCI algorithms along
with conditional independence tests based on Fisher’s
Z-test on partial correlation. We use a sample size of
5,000. (Unless stated otherwise, we use a statistical
significance level α = 5× 10−5 throughout this paper.)
The PC stable algorithm assumes that there are no
confounding latent variables, which makes it impossible
to infer the correct relationship between X and Z, while
FCI has that capability.

In Case 1 (Fig. 2), FCI correctly identifies the hidden
common cause between X and Z. These results are
robust for a range of statistical significance values
α ∈ [5× 10−5, 0.01]. In contrast, PC stable incorrectly
identifies direct connections between X and Z.

In Case 2, FCI identifies the correct causal structure
at a small α value, α = 5×10−5, while PC stable fails
to do so (results not shown). However, it appears that
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Fig. 2. Case 1 results for PC stable (left) and FCI (center). The
bi-directed edges between X and Z in the FCI results indicate the
presence of one or more latent confounders. A sample scenario is
presented using latent confounders L1 and L2 (right).

the FCI results for Case 2 are quite sensitive to the α
value. For example, at α = 0.01 FCI also indicates in-
correct direct interactions between X and Z. Therefore,
identifying the best α values for different sample sizes
can be a challenge in practical applications.

As shown in Fig. 3 (Case 3), both PC and FCI fail to
identify the hidden common cause when the the signal-
to-noise ratio of the hidden component is small. This is
not too surprising, as weak signals are always difficult
to pick up in causal discovery.
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Fig. 3. Case 3 results for PC stable (left) and FCI (right).

In summary, FCI performs well in this example for
the medium strength case, and it is neither surprising,
nor overly concerning, that FCI performs poorly for the
weak strength case. It is surprising, however, that FCI
results lack robustness for the strong case and this case
thus requires further study.

B. Application to Observed Climate Data

Next we revisit an application we previously studied
using the PC stable algorithm [18]. Namely, we look
at the causal links identified by PC stable and FCI
on data representing the Arctic temperature and mid-
latitude jet stream. While there is ample evidence of
connections between these two variables [18], [19],
it is also possible that hidden common causes are
present, for example, due to stratospheric processes
[20], [21]. Here we use (1) 850hPa Arctic temperature
averaged over 70oN-90oN (T ), (2) jet latitude (L) and
(3) jet speed (S) in the North Pacific. We analyze
daily data of the boreal winter months (Dec.-Feb.) from
the Community Earth System Model–Large Ensemble
(CESM-LE, [22]) for years 402 to 2200. The seasonal
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Fig. 4. Summarized potential causal structures identified by (a)
PC stable and (b) FCI. The time lags of the interactions are shown
along the edges. Dashed arrows here indicate interactions that are
not completely consistent across time (either weak or intermittent).
The red bi-directed edges in the FCI results indicate the presence
of one or more latent confounders.

cycle is removed from the data to weaken the impact
of time acting as a common cause of the variables. For
more information of the data and preprocessing, see
[18]. The results for PC stable and FCI are shown in
Figures 4(a) and (b), respectively. These results show
summarized inferred causal structures identified by the
algorithms. The results show that the auto-correlations
of L, S and T , the causal links between T and S, and
the causal links from L to T and L to S, occur in both
PC stable and FCI. However, the results also show the
direct instantaneous edges - instantaneous here means
fewer than 5 days - from T to L and S to L identified
in PC stable being replaced with bi-directed edges in
FCI, indicating that those instantaneous connections are
due to a hidden common cause, and that there is no
direct instantaneous causal interaction between the two
variables. We do not attempt to interpret these results
at this initial stage, as we need to further evaluate the
reliability and limitations of FCI. However, the fact
that FCI identifies just a few bi-directed edges, and
otherwise confirms the direct connections identified by
PC (rather than indicating lots of bi-directed edges),
indicates that this type of method could be of use to the
climate science community, if reliability can be shown.
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IV. CONCLUSIONS AND FUTURE WORK

Standard tools to infer causality in climate science
assume that the modeled systems are causally suf-
ficient. This assumption is often violated. We make
an initial effort to study the suitability of the FCI
algorithm, which is systematically designed to handle
hidden common causes, for climate applications. The
case studies suggest that FCI has potential to be useful.
However, limitations such as lack of robustness and
reliability are also apparent. As future work we propose
to test FCI, tsFCI, and Granger-based methods, for
more synthetic case studies, as well as for geophysical
data for which the causal signatures are already known.
A detailed analysis will help determine the usefulness of
these algorithms for the the climate science domain. In
addition, we plan to explore using different conditional
independence tests for FCI, such as KCI [23] or CCI
[24], to account for the non-linearities of relationships
and non-Gaussianity of data.
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