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Abstract—This paper investigates causal links between
Arctic temperatures and the jet-streams. We apply two
different frameworks for this application based on the
concepts of (1) Granger causality and (2) Pearl causality.
Both methods show that Arctic temperature and jet speed
each exhibit strong auto-correlation (as expected), and
that jet speed drives Arctic temperature at timescales of
5-15 days, while Arctic temperature drives jet speed at
timescales of up to 5 days, in the North Pacific. A positive
feedback loop is also identified and discussed, among
additional findings. This study is only the beginning of
a larger effort to apply and compare different causality
methods in order to gain a deeper understanding of the
causal connections between the Arctic and weather at
lower latitudes.

I. MOTIVATION

Arctic amplification–that is, the phenomenon of Arc-
tic temperatures rising much faster than the global mean
([1])–and its present and future effects on midlatitude
weather and climate have received substantial attention
in recent years. While it is well known that the midlat-
itude circulation can drive changes in Arctic tempera-
tures and sea ice, it is unclear how and to what extent
the Arctic influences midlatitude weather ([2]). Some
argue that Arctic amplification is already influencing
midlatitude weather (e.g. [3], [4], [5], [6]), while others
state that any possible signal is too small to have been
observed amidst the background of atmospheric vari-
ability (e.g. [7], [8], [9]). Regarding Arctic influence on
midlatitudes under climate change, idealized and fully-
coupled climate model simulations have shown an equa-
torward shift of the jet-stream and weakening of the
zonal winds in response to Arctic warming and sea ice
loss (e.g. [10], [11], [12], [13]), but little is understood
about the underlying dynamics behind this response in
models or whether the models can adequately simulate
the processes involved. Making progress requires that
we study the two-way causal connections between
Arctic temperatures and the midlatitude circulation, and
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place the different pathways in context of one another
and the background of atmospheric variability.

The typical approach for assessing causal links in
climate dynamics (including studying the links between
the jet-streams and Arctic warming/sea ice loss) is
targeted modeling studies. While incredibly useful for
understanding the physical mechanisms at play, this
approach only allows for studying cause and effect
in isolation, and does not allow for the feedbacks to
fully develop. In addition, we have entered a period
where atmospheric science tends to be “data rich”
both in observations and model output [14]. There is
great need for additional tools that can aid scientists
in identifying and extracting signals. Causal discovery
techniques provide (1) robust definitions of causality,
(2) can have direct ties to forecasting/prediction, (3)
augment targeted model studies, (4) place pathways in
context relative to other drivers and feedbacks, and (5)
allow for a direct comparison of results from observa-
tions and models.

Here we use two different frameworks to learn about
causal relationships for this system. The first framework
uses vector autoregression (VAR) type models (plain
VAR and LASSO), combined with the concept of
Granger causality. The second framework is based
on the concept of Pearl causality. We apply both
frameworks to the study of causal links between the
Arctic and midlatitude jet-streams. The purpose is two-
fold: (1) by comparing the results of two very different
frameworks we hope to obtain robust results; (2) we
hope to make more geoscientists aware of the different
types of causal analysis tools.

II. RELATED WORK

In recent years significant work has been done on us-
ing causal reasoning for climate applications, including
[15] [16] [17] [18] [19] [20] [21], on developing tools
for that purpose [22] [23], and on causal attribution of
climate events [24]. Of highest relevance to this work
are causality studies specifically for the Arctic: Strong
and Magnusdottir [25]; Kretschmer et al. [26]. These
studies demonstrate the utility of causality techniques
for studying Arctic-midlatitude connections, however,
each employs a different approach. Thus, it is unclear
whether different causality approaches would produce
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similar results, or whether a particular technique is best
suited for this topic. In addition, neither study investi-
gates the relationship between Arctic temperatures and
the jet-streams - the focus of this work.

III. DATA

We use daily data from the NCAR CESM1 Large
Ensemble Control run. We use Years 402 to 2,200,
resulting in 656,634 days (1,799 years) of data. For our
analysis we use only one season per year, either DJF or
JJA, roughly dividing the number of data samples for
each experiment by four. We focus on the North Pacific
(120oE - 230oE) and the following three indices: jet
latitude, L; jet speed, S; Arctic temperature (averaged
over 70oN-90oN), T . For each time series the seasonal
cycle was subtracted in order to focus on anomalies,
then it was averaged into non-overlapping chunks of 5
days to smooth out weather noise. Then we extract the
values corresponding to the season of choice. Finally,
each time series is standardized, i.e. we subtract its
mean and divide by its standard deviation.

IV. METHODS BASED ON GRANGER CAUSALITY

We first explain two closely related models, VAR
models and LASSO models, then discuss how they can
each be linked to the concept of Granger causality.

A. Vector Autoregression (VAR) model
A VAR(p) model estimates vector yt in terms of its

p lags as follows:

yt = c+A1yt−1 + ...+Apyt−p + et, (1)

where p denotes the number of lags considered; vector
yt contains the values of k considered variables at time
t; c is a coefficient vector; Ai are the k× k coefficient
matrices (for i = 1, . . . , p); and et is the vector of
error terms (residuals). Eq. (1) is a standard regression
problem and a standard least-squares approach is used
to calculate the model parameters [27], vector c and
matrices Ai. We derive such a VAR model for several
different values of p, then look at convergence charac-
teristics to choose the smallest p for which the model
no longer changes significantly.

B. LASSO model (Regularized Regression)
For an interpretation based on Granger causality we

need to distinguish which of the coefficients, akij , of
matrices Ai are non-zero. (The reasons will become
apparent in the next subsection.) For a standard VAR
model that requires using a cut-off value, since, due to
noise and numerical accuracy, none of the coefficients
is likely to be exactly zero. The LASSO (least absolute
shrinkage and selection operator) [28], [29] approach
solves this problem in a more elegant and robust way.

It adds constraints, namely it limits the sum of the
magnitude of the elements of all Ai (i = 1, . . . , 10)
matrices to be below a chosen threshold [30]. This
forces small coefficients to become exactly zero, while
the remaining coefficients compensate for that change.
As such it performs variable selection along with
prediction, i.e. it tells us which input variables (and at
which lags) are actually important in the model. LASSO
results in a model of the exact same form as Eq. (1), but
where many coefficients are exactly zero, which makes
the subsequent Granger analysis more straightforward.
C. Connection to Granger causality

Once a model of the form in Eq. (1) is obtained, we
perform validation tests to assure the model is stable
[27],[31], then apply the concept of Granger causality
by inspection of the coefficients in Ai. Let akij denote
the element of row i and column j of matrix Ak.
Then akij denotes the effect of yj,(t−k) (the jth variable,
lagged by k) on yi,t (the ith variable, without lag). Fur-
thermore, since the data was normalized, akij indicates
for a change of one standard deviation of yj,(t−k) how
much change to expect (approximately) in yi,t. (This
quantitative interpretation should be used with caution,
as many geophysical relationships are non-linear, and
the model is thus only a rough approximation.) Then,
for i 6= j, we see in this model that yj,(t−k) is useful
for the prediction of yi,t, if and only if akij 6= 0.
Consequently, the jth variable, yj , is said to Granger-
cause the ith variable, yi, if and only if at least one of
the coefficients akij 6= 0 for any lag k = 1, . . . , p.

V. METHOD BASED ON PEARL CAUSALITY

The concept of Granger causality is related to pre-
dictability. In contrast Pearl and Rebane developed the
framework of causal calculus [32] based on the concept
of intervention, which forms the basis for graphical
models and for the concept of Pearl causality (see
also [33], [34]). The method we use builds on the fact
that it is impossible to prove a cause-effect relationship
between two variables based on just observations, but
that one can nevertheless disprove such relationships
based on observations. We thus use an elimination
method that first assumes that all variables have cause-
effect connections to each other (for all lags), then uses
conditional independence tests to eliminate the great
majority of these connections. This method usually
yields a small set of potential cause-effect relationships,
each of which may or may not be a true causal
relationship. Nevertheless, the sets of actual causal
relationships is a subset of the resulting set. The specific
method used is the temporal version [15], [18] of the PC
stable algorithm [35], which is a variant of the classic
PC algorithm [36] (so named after the first names of
the two authors, i.e. no relation to PCA). For more
information, see [18]. For brevity, we refer to PC stable
as simply PC in the remainder of this document.
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VI. RESULTS AND INTERPRETATION

Our primary focus for now is on the boreal winter
(DJF) results, and the relationship between jet speed (S)
and Arctic temperature (T ). The results of the LASSO
model run for a maximum lag of 25 days (p = 5) is
shown in Figure 1a, while the results of the PC model
run using 11 time slices is shown in Figure 1b. To create
the time slices, we used the original variables (y) and
10 time shifted versions of y, namely shifted by -25,
-20, ..., -5, +5, ..., +25 days [18]. All three methods–
VAR (not shown), LASSO, and PC–agree quite well
with each other.

The LASSO model (Figure 1a) shows both the mag-
nitudes and the signs of the jet speed-Arctic temperature
(S-T ) relationship. First, we note that both S and T are
autocorrelated (curved arrows), with coefficients that
decay over the 25 day period but remain non-zero.
Second, T drives S 5 days earlier (as well as 15,
20, and 25 days earlier), with the positive coefficient
indicating that warmer temperatures drive a faster jet
in the North Pacific. S also drives T at a lag of 5
days, with the negative coefficient indicating that faster
jets are associated with a colder Arctic. However, at a
lag of 15 days and beyond, the relationship between
S and T changes–S drives T with positive LASSO
coefficients, indicating that a stronger North Pacific jet
drives warmer Arctic temperatures. Collectively, the
LASSO results indicate that there is a positive feed-
back loop between Arctic temperature and North
Pacific jet speed–a warmer Arctic drives a stronger
North Pacific jet, and the stronger jet drives further
Arctic warming.

The PC model (Figure 1b) agrees quite well with the
results of the LASSO model (although its formulation
does not provide the magnitudes or signs of the relation-
ships). In the PC model, we did not allow instantaneous
connections between variables to make it easier to
compare results with the VAR and LASSO models. The
autocorrelated relationships (curved arrows) in the PC
model are quite similar to those in the LASSO model. In
the PC model, T drives S at a lag of 5 days only, and S
drives T at lags of 15 and 20 days. These are the lags
with the strongest coefficients in the LASSO model.
So, the PC model and the LASSO model show very
similar results, with the lags with the strongest LASSO
coefficients also showing significant relationships in the
PC model.

Jet latitude, L, also shows evidence of a causal
relationship with T in both the LASSO and PC models
(not shown). The influence of T on L is not strong,
with both PC and LASSO showing few significant
relationships. However, the influence of L on T is
stronger. The LASSO model shows that L drives T
with negative coefficients at most lags, indicating that
a more poleward jet drives colder Arctic temperatures
(and vice versa). The PC model shows a very similar

Fig. 1. Arctic temperature (T ) and jet speed (S) relationships as
described by (a) LASSO (λ = 0.005, p = 5) and (b) PC (11 time
slices, α = 0.05) models. Non-zero LASSO regression coefficients
are shown next to their corresponding arrows in (a). (b) shows lags at
which a significant relationship was present according to PC stable.

relationship to the LASSO model, with L driving T at
similar lags.

VII. CONCLUSIONS AND FUTURE WORK

Using VAR, LASSO, and PC models, we have
demonstrated that Arctic temperature drives jet speed
at timescales of 5-15 days in the North Pacific. This
relationship is positive, with warmer Arctic tempera-
tures driving a stronger jet, and a stronger jet driving
warmer Arctic temperatures. The work described here
is only the beginning of a larger study. Future steps
include: (1) expansion of these methods to reanalysis,
2-D spatial fields, and inclusion of additional variables
such as sea ice extent; (2) providing results from signif-
icance testing by comparing unrestricted and restricted
VAR models; (3) quantifying the strength of causal
relationships beyond use of regression coefficients.
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