Useful Formulas for Loans

Edwin Chong

October 27, 2010

Given:

- B: amount borrowed
- N : loan horizon (number of months)
- R : monthly interest rate (fraction, usually annual interest rate divided by 12)

Fixed Monthly Payment

Goal: Calculate the fixed monthly payment such that after N payments, the loan is exactly paid off. Call this number U.

Let B_{k} be the loan balance (or principal) after k monthly payments, where $k=1, \ldots, N$. Then, the sequence B_{1}, B_{2}, \ldots satisfies

$$
B_{k}=(1+R) B_{k-1}-U, \quad k=1,2, \ldots, N,
$$

with $B_{0}=B$. The standard formula for the solution to this linear difference equation is

$$
B_{k}=(1+R)^{k} B-U \sum_{j=0}^{k-1}(1+R)^{j}=(1+R)^{k} B-U \frac{(1+R)^{k}-1}{R} .
$$

If we set $B_{N}=0$ and solve for U, we get this:

$$
\text { Monthly payment: } \quad U=B R \frac{(1+R)^{N}}{(1+R)^{N}-1}
$$

Note: In Excel, $(1+R)^{N}$ is implemented using the formula $\operatorname{POWER}(1+R, N)$. An alternative formula, which contains only a single "power," is:

$$
\text { Monthly payment: } \quad U=\frac{B R}{1-(1+R)^{-N}}
$$

If N is very large, then U is approximately $B R$, which is the monthly interest on the initial loan B. In general, U is larger than $B R$. For example, in the first month, the monthly payment must include the interest $B R$ and some additional amount to reduce the principal.

Monthly Principal Reduction

Goal: Calculate the amount that the principal is reduced when making the k th payment.
We first calculate the balance after k payments by substituting the formula for U into the expression for B_{k} above. We get

$$
B_{k}=B\left(\frac{(1+R)^{N}-(1+R)^{k}}{(1+R)^{N}-1}\right), \quad k=0,1, \ldots, N
$$

Hence, the amount of principal reduction associated with the k th payment is $B_{k-1}-B_{k}=$ $U-R B_{k-1}$, which simplifies to this:

$$
\text { Principal reduction }=B R \frac{(1+R)^{k-1}}{(1+R)^{N}-1}
$$

Notice that if N is large and k is small compared to N, then this number is a small fraction of $B R$, the interest on the initial loan. But it grows geometrically with k.

Total Interest Paid

Goal: Calculate the total interest paid. Call this number T.
The interest associated with the k th payment is $B_{k-1} R$. Hence, the total interest paid is

$$
T=\sum_{k=1}^{N} B R\left(\frac{(1+R)^{N}-(1+R)^{k-1}}{(1+R)^{N}-1}\right) .
$$

Simplifying, we get this:

$$
\text { Total interest paid: } \quad T=B\left(N R \frac{(1+R)^{N}}{(1+R)^{N}-1}-1\right)
$$

At this point, we realize that this expression looks familiar. In fact, it can be written as this:

$$
T=N U-B
$$

which surely makes sense: The total amount paid over N months minus what was borrowed is the total interest paid.

