Errata:
 An Introduction to Optimization, Fourth Edition
 by
 Edwin K. P. Chong and Stanislaw H. Żak

Version: March 6, 2024

Typos and minor changes: Printings 1-3

- p. 12, second line from bottom: Remove one of the two repeated instances of "use."
- p. 15, line 5: Add to the end of the sentence: "Moreover, it follows from properties 1 and 2 that the determinant of a matrix with two identical columns, not necessarily next to each other, is always 0 ." [Thanks to Zain Khandwala.]
- p. 52, four lines from bottom: Change "convex polytope" to "polyhedron". (Unfortunately, the definitions of polytope and polyhedron are not universal, so the original text is still consistent with some definitions in the literature.)
- p. 52, caption of Figure 4.10: Change to "Polyhedra."
- p. 52, three lines from bottom: Change "A nonempty bounded polytope is called a polyhedron" to "A nonempty bounded polyhedron is called a polytope". (Unfortunately, the definitions of polytope and polyhedron are not universal, so the original text is still consistent with some definitions in the literature.)
- p. 53, caption of Figure 4.11: Change "polyhedron" to "polytope".
- p. 94, Exercise 6.7: In the right-hand side of the equation, change $f(\boldsymbol{y})$ to $f\left(\boldsymbol{y}-\boldsymbol{x}_{0}\right)$. [Thanks to Brandon Van Over.]
- p. 98, Exercise 6.20: Add the following after the last sentence: "The position $x \in \mathbb{R}$ is unconstrained." [Thanks to Brandon Van Over.]
- p. 144, Example 8.3: In line 8 , change " $\boldsymbol{x}^{(k)} \rightarrow 0$ " to " $\boldsymbol{x}^{(k)} \rightarrow \boldsymbol{x}^{*}$ ". In the second displayed equation, change " $\frac{1}{2}$ " at the right-hand side of the inequality to " 0 ". In the last line, add the following in between " k." and "Hence": ", showing that the condition $\sum_{k=0}^{\infty} \gamma_{k}=\infty$ fails." [Thanks to Yuwei Jheng.]
- p. 148, line 15: Change "reflects that fact" to "reflects the fact". [Thanks to Nikica Hlupić.]
- p. 153, line 2 , just after "... not an eigenvector of Q ": Insert ", which has distinct eigenvalues (because $\lambda_{\max }(\boldsymbol{Q})>\lambda_{\min }(\boldsymbol{Q})$)."
- p. 153, line 3: Add negative sign in front of " $\left(\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{(k)}\right)$ "; the equation should read $\boldsymbol{g}^{(k)}=-\left(\boldsymbol{x}^{(k+1)}-\boldsymbol{x}^{(k)}\right) / \alpha_{k}$. [Thanks to Yuwei Jheng.]
- p. 153, line 10, just after "... corresponding to $\lambda_{\max }(\boldsymbol{Q})$ and $\lambda_{\min }(\boldsymbol{Q})$ ": Insert ", assumed unequal."
- p. 162, line 4: Replace "objection function" by "objective function" [thanks to Ali Pezeshki].
- p. 171, Exercise 9.1 question: At the end of the question after "minimizing f " append "with iterates $x^{(0)}, x^{(1)}, x^{(2)}, \ldots$."
- p. 173, Exercise 9.4, part b: At the end of the question after "Newton's method" append "(with unit step size)."
- pp. 177-178, proof of Theorem 10.1: Change the symbol β to some other symbol, like η, so that there won't be any confusion with the same symbol used in Section 10.3.
- p. 201, equation four lines from bottom: Add T next to the leftmost superscript (k). The equation should be

$$
\Delta \boldsymbol{g}^{(k) \top}\left(\Delta \boldsymbol{x}^{(k)}-\boldsymbol{H}_{k} \Delta \boldsymbol{g}^{(k)}\right)
$$

[Thanks to Vishal Shetty.]

- p. 202, part of Example 11.2: Replace the part of the example from the first displayed equation with the following:

$$
f(\boldsymbol{x})=\left(x_{2}-x_{1}\right)^{4}+12 x_{1} x_{2}-x_{1}+x_{2}-3
$$

with an initial point

$$
\boldsymbol{x}^{(0)}=[-0.5262,0.6014]^{\top}
$$

and initial matrix

$$
\boldsymbol{H}_{0}=\left[\begin{array}{cc}
0.1186 & -0.0376 \\
-0.0376 & 0.1191
\end{array}\right]
$$

Note that $\boldsymbol{H}_{0}>0$. We have

$$
\Delta \boldsymbol{g}^{(0) \top}\left(\Delta \boldsymbol{x}^{(0)}-\boldsymbol{H}_{0} \Delta \boldsymbol{g}^{(0)}\right)=-0.00076948
$$

and

$$
\boldsymbol{H}_{1}=\left[\begin{array}{cc}
0.0331 & 0.0679 \\
0.0679 & -0.0110
\end{array}\right]
$$

It is easy to check that \boldsymbol{H}_{1} is not positive definite (it is indefinite, with eigenvalues 0.0824 and -0.0603).
[Thanks to Julio Gonzalez-Saenz for pointing out the need to change the numerical values in this example.]

- p. 281, second paragraph, line 2, change "step 5" to "step 3". [Thanks to Nikica Hlupić.]
- p. 284, line 8: Replace " $\boldsymbol{g}^{(k+1)}=\boldsymbol{x}_{i}^{(k+1) "}$ by " $\boldsymbol{g}^{(k+1)}=\arg \min _{\boldsymbol{x} \in\left\{\boldsymbol{x}_{1}^{(k+1)}, \ldots, \boldsymbol{x}_{d}^{(k+1)}\right\}} f(\boldsymbol{x})$ ".
- p. 287, 8 lines from bottom: Change "left" to "right" (should be "... right of the crossing site").
- p. 290, last line: Change " 8 -bit" to " 16 -bit."
- p. 316, eight lines from bottom: Change "polytope" to "polyhedron" (two occurrences).
- p. 316, seven lines from bottom: Change "polyhedron" to "polytope". Same with occurrences of "polyhedron" six, four, three, and two lines from the bottom. (Unfortunately, the definitions of polytope and polyhedron are not universal, so the original text is still consistent with some definitions in the literature.)
- p. 317, Figure 15.4 caption and line two: Change "polyhedron" to "polytope". (Unfortunately, the definitions of polytope and polyhedron are not universal, so the original text is still consistent with some definitions in the literature.)
- p. 539, line 4: Change "gep" to "gevp" in the MATLAB command.
- p. 539, line 7: Change " $\boldsymbol{C}(\boldsymbol{x}) \leq \boldsymbol{D}(\boldsymbol{x}), \boldsymbol{C}(\boldsymbol{x}) \leq \boldsymbol{D}(\boldsymbol{x})$ " to " $\boldsymbol{C}(\boldsymbol{x}) \leq \boldsymbol{D}(\boldsymbol{x}), 0 \leq \boldsymbol{B}(\boldsymbol{x})$ " (the second inequality should be $0 \leq \boldsymbol{B}(\boldsymbol{x})$).
- p. 550, line 19 (middle of page): Change "define $\boldsymbol{y}=\boldsymbol{\Pi}[\boldsymbol{x}] \in \mathbb{R}^{n}$ " to "define " $\boldsymbol{y}=\boldsymbol{\Pi}[\boldsymbol{x}] \in$ Ω " (change \mathbb{R}^{n} to Ω; not strictly an error, but to improve the exposition). [Thanks to Nikica Hlupić.]
- p. 558, proof of Theorem 23.2, 8th line (just above first displayed equation): Change " $\mathbb{R}^{n \times m} \rightarrow$

- p. 565, 11 lines from bottom: Change $\|h(\boldsymbol{x})\|^{2} \leq 0$ to $\|\boldsymbol{h}(\boldsymbol{x})\|^{2} \leq 0$ (the \boldsymbol{h} should be boldface). [Thanks to Nikica Hlupić.]
- p. 582, second bullet item (line 9): Insert "nor is dominated by" between "dominate" and "any" (should be " \boldsymbol{x}^{j} does not dominate nor is dominated by any existing candidate solutions"). [Thanks to Nikica Hlupić.]
- p. 582, end of line 13 and beginning of line 14: Insert "nor is dominated by" between "dominate" and "any" (should be " x^{j} does not dominate nor is dominated by any existing candidate solutions"). [Thanks to Nikica Hlupić.]
- p. 583-584, Algorithm for Generating a Pareto Front: In step 2, line 2, change "candidate solutions" to "solutions to be generated".
In step 4 , change the displayed inequality to " $f_{i}\left(\boldsymbol{x}^{j}\right) \leq f_{i}\left(\boldsymbol{x}^{* r}\right)$ " (i.e., should be \leq, not $<$), and just after the inequality add "and $f_{i}\left(\boldsymbol{x}^{j}\right)<f_{i}\left(\boldsymbol{x}^{* r}\right)$ for at least one i ". [Thanks to Nikica Hlupić.]
In step 4 , delete " $\boldsymbol{f}^{* R}:=\boldsymbol{f}\left(\boldsymbol{x}^{j}\right)$,".
In step 5 , just after the displayed inequality add "and $f_{i}\left(\boldsymbol{x}^{j}\right)>f_{i}\left(\boldsymbol{x}^{* r}\right)$ for at least one i ".
In step 7, delete ", add \boldsymbol{x}^{j} as a new candidate Pareto solution, and go to step 2".
- p. 611, index entry for "polyhedron" under "Convex set": Change 317 to 316.
- p. 611, index entry for "polytope" under "Convex set": Change 316 to 316, 317. (Unfortunately, the definitions of polytope and polyhedron are not universal, so the original text is still consistent with some definitions in the literature.)
- p. 609, Index: All page numbers above 348 are probably one to five pages lower than they should be. Some examples shown below:
- p. 610, index entry for "Bland's rule": Change 375 to 376.
- p. 612, index entry for "dual nonlinear program" under "Duality": Change 543 to 546.
- p. 612, index entry for "duality theorem" under "Duality": Change 543 to 547.
- p. 612, index entry for "weak duality lemma" under "Duality": Change the page numbers to $387,401,547$.
- p. 612, index entry for "dual quadratic program" under "Duality": Change 399 to 401.
- p. 612, index entry for "primal quadratic program" under "Duality": Change 399 to 401.
- p. 612, index entry for "quadratic programming" under "Duality": Change 399 to 401.
- p. 612, index entry for "Duality theorem": Change 543 to 547.
- p. 612, index entry for "Lagrangian" under "Function": Change 543 to 547.
- p. 612, index entry for "utility" under "Function": Change 542 to 546.
- p. 615, index entry for "Klee-Minty problem": Change 401 to 403.
- p. 615, index entry for "Lagrangian function": Change 543 to 547.
- p. 615, index entry for "Bland's rule" under "Linear programming": Change 375 to 376.
- p. 615, index entry for "Klee-Minty problem" under "Linear programming": Change 401 to 403.
- p. 616, index entry for "Lyapunov inequality": Change the page numbers to 531, 547.
- p. 616, index entry for "MATLAB": Change 543 to 547.
- p. 617, index entry for "Minimax": Change the page numbers to 581, 586, 590.
- p. 615, index entry for "Minty": Change 401 to 403.
- p. 618, index entry for "Primal nonlinear program": Change 542 to 546.
- p. 618, index entry for "Primal quadratic program": Change 399 to 401.
- p. 619, index entry for "Proportional fairness": Change the page number to 545.
- p. 619, index entry for "Quadratic programming": Change the page numbers to 401, 476, 485, 504.
- p. 620, index entry for "Bland's rule" under "Simplex method": Change 375 to 376.
- p. 621, index entry for "Singular value decomposition": Change the page number to 575.
- p. 621, index entry for "Subgradient": Change the page numbers to 519, 541.
- p. 622, index entry for "Utility function": Change 542 to 546.
- p. 622, index entry for "Weak duality lemma": Change the page numbers to 387, 401, 547.

