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Abstract 

Methods for predicting resistance coefficients in high-gradient streams are essential for hydraulic 
modeling, stream restoration, geomorphic analysis, and quantifying ecological habitat 
characteristics. Nine figures documenting Manning’s n and Darcy-Weisbach ff are provided for 
low, mid and near-bankfull flows in cascade, step pool and plane bed stream reaches in the 
Fraser Experimental Forest, Colorado. Photographs from multiple perspectives and flows are 
given to illustrate reach characteristics. Profile plots and bed material D84 are also included. The 
stream reaches have slopes ranging from 1.5 to 20 percent, with measurements during discharges 
ranging from 0.0067 to 0.61 cms (0.23 to 21 cfs). Manning’s n varied from 0.048 to 0.52. 

INTRODUCTION 

Flow resistance in open channels is composed of three fundamental components: boundary 
(grain) resistance from bed and bank interactions; form resistance, from a deflection that causes 
superelevated and depressed water surfaces, resulting in secondary currents and eddying; and 
spill resistance, resulting from sudden supercritical flow deceleration, such as at the base of a 
drop. In lower-gradient streams boundary resistance is often dominant, hence the effectiveness of 
relative submergence in predicting resistance. In cascade and step pool streams form resistance 
has many sources, including bed and bank variability, boulders that project through the flow 
field, and large woody debris (LWD). A large proportion of the resistance can result from spill 
where rapid flow and waterfalls impact on standing water, resulting in substantial turbulence. In 
step-pool and cascade streams, spill resistance is typically dominant (Curran and Wohl 2003, 
MacFarlane and Wohl 2003, Wilcox and Wohl 2006). 

For practical applications, flow resistance is typically quantified by Manning’s n. Commonly-
cited references for estimating n typically underestimate in steeper streams. For example, the 
HEC-RAS Hydraulic Reference Manual (Brunner 2008) makes recommendations based upon 
Chow (1959); a maximum n of 0.07 is suggested for “mountain streams” while research indicate 
substantially higher resistance values are to be expected (Reid and Hickin, 2008; Comiti et al. 
2007; Lee and Ferguson, 2002). Manning’s n typically falls between 0.1 to 0.3 for bankfull flows 
in steep headwater streams. Other commonly-used references for estimating n, such as the use of 
base and additive values (Cowan 1956, Arcement and Schneider 1989), can also be misleading. 
Photo guides for visual comparison (Barnes 1967, Aldridge and Garrett 1973, Arcement and 
Schneider 1989) do not provide sufficient guidance for these stream types. Underestimation of 
Manning’s n can lead to substantially-overestimated flow velocities, underestimated travel times, 
miscategorization of flow regime, and computational instability. 



PHOTO-GUIDANCE FOR RESISTANCE COEFFICIENTS SELECTION 

Nine figures are provided illustrating stream reach characteristics, with Manning’s n and Darcy-
Weisbach ff given for low, mid and approximate bankfull flows. Photographs of the reaches from 
multiple perspectives and flow magnitudes are provided. Profile plots are also included, to depict 
the bed and water surface during bankfull flow. The figures are ordered from the lowest to 
highest bankfull n values. 

Methodology 

Data collection was performed in the Fraser Experimental Forest, on East Saint Louis and Fool 
Creeks. The Fraser Experimental Forest is located in the Fraser River Watershed, in the Upper 
Colorado Basin west of the town of Fraser, approximately 115 km west of Denver, Colorado. 
Precipitation is primarily in the form of snow, with average annual total estimates (1961-1990 
PRISM) ranging from 64 to 89 cm (25 to 35 in). All fifteen stream reaches, which were 
classified as being cascade, step pool and plane bed in form (Montgomery and Buffington 1997), 
are just upstream of gaging stations monitored by the U.S. Forest Service using sharp-crested 
weirs. Large woody debris were present, with many of the steps formed by clasts-anchoring 
debris material. The elevation of the stream reaches range from 2915 to 3217 m (9560 to 10,600 
ft), with slopes varying from 1.5 to 20 percent. 

Data collection was composed of bed, bank and floodplain surveying; longitudinal water surface 
profiles, at high, medium and low flows; average reach velocity measurements; and bed material 
characterization. A brief summary of the methods is provided; additional details are provided in 
Yochum et al. (in review). 

Reach surveying was performed with a tripod-mounted LiDAR (Light Detection and Ranging) 
scanner for above-water surface features and a gridded laser theodolite survey for below-water 
features. Additionally, a laser theodolite was used for measuring longitudinal profiles of the bed 
and water surface during each resistance measurement, at the thalweg, left and right edge of 
water. A common coordinate system was established using a system of control points, to ensure 
geometric data compatibility. Cross sections were developed from the pointcloud data at an 
interval of 0.75 to 1.50 m (2.4 to 4.9 ft) over the 6 to 35 m (20 to 115 ft) reach lengths, for a total 
of 9 to 27 sections per reach. The surveyed thalweg lengths followed the path of the estimated 
center of mass of the flow, which provides the most hydraulically-representative reach length for 
a specific flow. Bed gradation was measured using a 300-point, spatially-referenced pebble 
count. 

Average reach velocities were characterized with Rhodamine WT dye tracing, using 
fluorometers mounted on rebar in the thalweg at the upstream and downstream reach limits. 
Rhodamine concentrations were measured at a one second time step; the dye was released as a 
slug in midstream. A single-pass three-point median smoothing methodology was applied to the 
tracer data, to address data noise. To calculate average reach velocity, a spatial harmonic mean 
travel time was computed, as detailed by Walden (2004). 



 

Figure 1: East Saint Louis, reach ESL6 (plane bed).
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low flow  (8/8/2007) 
n = 0.10 
ff = 1.4 
v = 0.39 m/s Froude # = 0.31 
  (1.3 ft/s) length = 6.2 m 
Q = 0.10 cms    (20 ft) 
  (3.5 cfs) width = 2.7 m 
sf = 0.019 m/m    (8.7 ft) 
so = 0.015 m/m 
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8/13/2007 
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D84 = 77 mm 

~bankfull flow 
n = 0.048 
ff = 0.28 
v = 1.3 m/s 
  (4.3 ft/s) 
Q = 0.52 cms 
  (18 cfs) 
sf = 0.024 m/m 
so = 0.0098 m/m 
Froude # = 0.77 
length = 6.4 m 
   (21 ft) 
width = 3.0 m 
   (9.8 ft) 

mid flow 
n = 0.078 
ff = 0.76 
v = 0.61 m/s 
  (2.0 ft/s) 
Q = 0.32 cms 
  (11 cfs) 
sf = 0.015 m/m 
so = 0.017 m/m 
Froude # = 0.37 
length = 6.4 m 
   (21 ft) 
width = 2.9 m 
   (9.3 ft) 



 

Figure 2: Fool Creek, reach FC1 (transitional between plane bed and step pool).
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sf = 0.063 m/m 
so = 0.064 m/m 
Froude # = 0.58 
length = 23 m 
   (76 ft) 
width = 2.0 m 
   (6.4 ft) 

mid flow 
n = 0.17 
ff = 5.0 
v = 0.30 m/s 
  (0.99 ft/s) 
Q = 0.037 cms 
  (1.3 cfs) 
sf = 0.061 m/m 
so = 0.063 m/m 
Froude # = 0.29 
length = 23 m 
   (76 ft) 
width = 1.6 m 
   (5.1 ft) 



 

Figure 3: East Saint Louis, reach ESL7 (cascade).
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  (1.3 ft/s) length = 24 m 
Q = 0.10 cms    (80 ft) 
  (3.6 cfs) width = 2.5 m 
sf = 0.082 m/m    (8.1 ft) 
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6/8/2008 7/15/2008 

9/25/2009 

D84 = 174 mm 

mid flow 
n = 0.19 
ff = 4.9 
v = 0.55 m/s 
  (1.8 ft/s) 
Q = 0.30 cms 
  (11 cfs) 
sf = 0.081 m/m 
so = 0.086 m/m 
Froude # = 0.32 
length = 24 m 
   (79 ft) 
width = 2.9 m 
   (9.6 ft) 

~bankfull flow 
n = 0.17 
ff = 3.5 
v = 0.69 m/s 
  (2.3 ft/s) 
Q = 0.52 cms 
  (18 cfs) 
sf = 0.085 m/m 
so = 0.089 m/m 
Froude # = 0.39 
length = 22 m 
   (72 ft) 
width = 3.0 m 
   (9.9 ft) 



 

Figure 4: Fool Creek, reach FC6 (cascade).
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low flow  (8/10/2007) 
n = 0.44 
ff = 42 
v = 0.12 m/s Froude # = 0.16 
  (0.40 ft/s) length = 22 m 
Q = 0.0067 cms    (73 ft) 
  (0.23 cfs) width = 0.67 m 
sf = 0.16 m/m    (2.2 ft) 
so = 0.16 m/m 
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D84 = 95 mm 

~bankfull flow 
n = 0.17 
ff = 4.8 
v = 0.62 m/s 
  (2.0 ft/s) 
Q = 0.14 cms 
  (5.0 cfs) 
sf = 0.20 m/m 
so = 0.18 m/m 
Froude # = 0.50 
length = 19 m 
   (63 ft) 
width = 1.1 m 
   (3.5 ft) 

mid flow 
n = 0.32 
ff = 19 
v = 0.23 m/s 
  (0.77 ft/s) 
Q = 0.017 cms 
  (0.59 cfs) 
sf = 0.18 m/m 
so = 0.17 m/m 
Froude # = 0.24 
length = 21 m 
   (68 ft) 
width = 0.92 m 
   (3.0 ft) 



 

Figure 5: East Saint Louis Creek, reach ESL1 (step pool). 
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D84 = 156 mm 

~bankfull flow 
n = 0.19 
ff = 4.5 
v = 0.65 m/s 
  (2.1 ft/s) 
Q = 0.56 cms 
  (20 cfs) 
sf = 0.095 m/m 
so = 0.10 m/m 
Froude # = 0.35 
length = 29 m 
   (96 ft) 
width = 2.9 m 
   (9.6 ft) 

mid flow 
n = 0.27 
ff = 9.4 
v = 0.42 m/s 
  (1.4 ft/s) 
Q = 0.24 cms 
  (8.3 cfs) 
sf = 0.11 m/m 
so = 0.11 m/m 
Froude # = 0.26 
length = 27 m 
   (90 ft) 
width = 2.6 m 
   (8.5 ft) 



 

Figure 6: East Saint Louis Creek, reach ESL9 (step pool). 
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n = 0.28 
ff = 10.9 
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  (1.1 ft/s) length = 19 m 
Q = 0.11 cms    (61 ft) 
  (3.8 cfs) width = 2.3 m 
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6/8/2008 7/11/2007 

9/25/2009 

D84 = 153 mm 

~bankfull flow 
n = 0.21 
ff = 5.5 
v = 0.64 m/s 
  (2.1 ft/s) 
Q = 0.57 cms 
  (20 cfs) 
sf = 0.11 m/m 
so = 0.11 m/m 
Froude # = 0.36 
length = 16 m 
   (53 ft) 
width = 2.8 m 
   (9.2 ft) 

mid flow 
n = 0.26 
ff = 8.8 
v = 0.43 m/s 
  (1.4 ft/s) 
Q = 0.20 cms 
  (7.1 cfs) 
sf = 0.10 m/m 
so = 0.11 m/m 
Froude # = 0.27 
length = 16 m 
   (53 ft) 
width = 2.6 m 
   (8.5 ft) 



 

Figure 7: Fool Creek, reach FC4 (step pool). 
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low flow  (8/11/2007) 
n = 0.52 
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  (0.49 cfs) width = 1.3 m 
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Q = 0.22 cms 
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so = 0.14 m/m 
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Figure 8: East Saint Louis Creek, reach ESL4 (step pool). 
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low flow  (8/6/2007) 
n = 0.32 
ff = 14 
v = 0.33 m/s Froude # = 0.23 
  (1.1 ft/s) length = 17 m 
Q = 0.12 cms    (54 ft) 
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D84 = 173 mm 

~bankfull flow 
n = 0.23 
ff = 6.3 
v = 0.63 m/s 
  (2.1 ft/s) 
Q = 0.61 cms 
  (21 cfs) 
sf = 0.12 m/m 
so = 0.14 m/m 
Froude # = 0.34 
length = 16 m 
   (51 ft) 
width = 2.9 m 
   (9.4 ft) 

mid flow 
n = 0.28 
ff = 9.7 
v = 0.50 m/s 
  (1.6 ft/s) 
Q = 0.32 cms 
  (11 cfs) 
sf = 0.12 m/m 
so = 0.12 m/m 
Froude # = 0.27 
length = 16 m 
   (52 ft) 
width = 2.9 m 
   (9.4 ft) 



 

Figure 9: East Saint Louis Creek, reach ESL5 (cascade). 
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mid flow 
n = 0.29 
ff = 11 
v = 0.48 m/s 
  (1.6 ft/s) 
Q = 0.33 cms 
  (12 cfs) 
sf = 0.14 m/m 
so = 0.14 m/m 
Froude # = 0.29 
length = 14 m 
   (46 ft) 
width = 4.0 m 
   (13 ft) 

low flow  (8/8/2007) 
n = 0.38 
ff = 22 
v = 0.27 m/s Froude # = 0.20 
  (0.88 ft/s) length = 15 m 
Q = 0.10 cms    (50 ft) 
  (3.6 cfs) width = 3.3 m 
sf = 0.13 m/m    (11 ft) 
so = 0.14 m/m 
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D84 = 144 mm 

~bankfull flow 
n = 0.30 
ff = 11 
v = 0.52 m/s 
  (1.7 ft/s) 
Q = 0.50 cms 
  (18 cfs) 
sf = 0.16 m/m 
so = 0.16 m/m 
Froude # = 0.30 
length = 13 m 
   (41 ft) 
width = 4.0 m 
   (13 ft) 



CONCLUSION 

Photographic guidance is provided for the selection of Manning’s n and Darcy Darcy-Weisbach 
ff for low, mid and approximate bankfull flows in cascade, step pool and plane bed stream 
reaches, based upon research in the Fraser Experimental Forest, Colorado. Computed Manning’s 
n values are substantially higher than those suggested by commonly-cited references, though are 
similar to those measured by other researchers in similar stream types. This photographic tool is 
helpful for general resistance coefficient selection in high-gradient streams, though caution is 
warranted when judging the wisdom of extrapolating these results to larger streams or reaches 
where the flow interacts more substantially with non-step-forming large woody debris. 
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