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Abstract

Streamflow prediction in ungauged basins provides essential information for water resources planning and management and

ecohydrological studies yet remains a fundamental challenge to the hydrological sciences. A methodology is presented for

stratifying streamflow regimes of gauged locations, classifying the regimes of ungauged streams, and developing models for

predicting a suite of ecologically pertinent streamflow metrics for these streams. Eighty-four streamflow metrics characterizing

various flow regime attributes were computed along with physical and climatic drainage basin characteristics for 150 streams

with little or no streamflow modification in Colorado, Washington, and Oregon. The diverse hydroclimatology of the study area

necessitates flow regime stratification and geographically independent clusters were identified and used to develop separate

predictive models for each flow regime type. Multiple regression models for flow magnitude, timing, and rate of change metrics

were quite accurate with many adjusted R2 values exceeding 0.80, while models describing streamflow variability did not

perform as well. Separate stratification schemes for high, low, and average flows did not considerably improve models for

metrics describing those particular aspects of the regime over a scheme based on the entire flow regime. Models for streams

identified as ‘snowmelt’ type were improved if sites in Colorado and the Pacific Northwest were separated to better stratify the

processes driving streamflow in these regions thus revealing limitations of geographically independent streamflow clusters.

This study demonstrates that a broad suite of ecologically relevant streamflow characteristics can be accurately modeled across

large heterogeneous regions using this framework. Applications of the resulting models include stratifying biomonitoring sites

and quantifying linkages between specific aspects of flow regimes and aquatic community structure. In particular, the results

bode well for modeling ecological processes related to high-flow magnitude, timing, and rate of change such as the recruitment

of fish and riparian vegetation across large regions.
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1. Introduction

Predicting streamflow behavior in ungauged (i.e.

no streamflow data available) basins is a significant

challenge facing the hydrologic sciences. Accurate

estimates of hydrologic variables at ungauged sites
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are not only important for water resources planning

and management issues related to yield, storage, and

extreme events, but are increasingly germane to

ecological studies across a wide range of spatial and

temporal scales. Streamflow regime encompasses the

magnitude, timing, duration, and frequency of high

and low flows, the rate of change of streamflow, and

inter-annual variation and is increasingly cited as a

‘master variable’ that structures aquatic ecosystems

and habitats (Poff and Ward, 1989; Richter et al.,

1996; Poff et al., 1997; Baron et al., 2002). The

specific hydrologic characteristics of greatest ecologi-

cal relevance, however, remain largely unknown for

most biotic communities. Moreover, a recent move-

ment towards standardized biological monitoring at

probabilistically selected stream and river sites (e.g.

U.S. Environmental Protection Agency (USEPA),

2002) is providing unprecedented opportunities to

examine biological-physical associations across broad

geographic areas and hydrologic gradients. Because

most biomonitoring sites are ungauged and there is

substantial uncertainty regarding which hydrologic

characteristics explain the observed biological vari-

ation, there is a burgeoning interest in the prediction

of ecologically relevant hydrologic metrics for these

sites. The need to generate a broad suite of hydrologic

metrics at biological monitoring sites spanning large

regions in the western United States (U.S.) provided

the primary impetus for the work we present herein.

The literature is replete with studies focused on

predicting selected streamflow attributes for

ungauged streams (e.g. Thomas and Benson, 1970;

Vogel et al., 1999; Chiang et al., 2002b). The typical

approach to streamflow prediction in ungauged basins

across large regions is to delineate geographic areas of

similar streamflow pattern, use regression to relate

watershed characteristics to streamflow variables, and

assess model reliability (e.g. Jennings et al., 1994). In

the western U.S., various processes control stream-

flow across multiple scales, hydroclimatic regions,

and marked elevational gradients. The identification

of distinct streamflow regime types at ungauged sites

is critical for stratifying key processes and developing

robust predictive models for each flow regime type.

Selecting geographically contiguous regions of flow

regime types from previously delineated regions (e.g.

Thomas and Benson, 1970; Vogel et al., 1999)

or examining residuals of regression Eqs.
(Jennings et al., 1994; Tucci et al., 1995) facilitates

stratification of ungauged streams. Cluster analysis

can be used to objectively define geographically

independent streamflow groups across regions

(Hawley and McCuen, 1982; Haines et al., 1988;

Burn, 1989; Hughes and James, 1989; Poff and Ward,

1989; Burn and Boorman, 1993; Kresch, 1993; Poff,

1996; Harris et al., 2000) and has been coupled with

discriminant analysis to identify streamflow cluster

membership of ungauged streams using catchment

characteristics (Chiang et al., 2002a,b). Regression

has been used within defined regions or strata to

predict the mean and variance of flows, auto-

correlation, flood durations and volumes (Thomas

and Benson, 1970), parameters of statistical distri-

butions to reproduce flow duration curves (e.g.

Smakhtin et al., 1997; Fennessey and Vogel, 1990;

Sugiyama et al., 2003), direct estimates of flood

quantiles (Thomas and Benson, 1970; Surian and

Andrews, 1999; Pitlick, 1994; Jennings et al., 1994),

low flows (Ries and Friesz, 2000), and parameters of

time series models to generate synthetic streamflows

(Chiang et al., 2002a,b). Flow duration curves and

flood quantile estimates provide valuable information

about flow magnitudes and frequencies but cannot

provide information about timing, a critical variable

in many ecological studies. Synthetic monthly stream-

flows generated from a time series model include

timing but omit information contained in metrics

which characterize flows at the event or daily time

scale.

In this paper, our purpose is to present: (1) a

validated stratification scheme for identification and

subsequent classification of streamflow regime types

for ungauged sites, and (2) models developed for

providing accurate estimates of a broad range of

streamflow metrics of ecological interest at ungauged

biological monitoring sites in 18 ecoregions

(Omernik, 1995) of Colorado (CO), Oregon (OR),

and Washington (WA). The disconnectedness and

acute hydroclimatic variability of the study region and

the prediction of unique streamflow metrics char-

acterizing the entire flow regime provide practical

insights regarding the efficacy of streamflow predic-

tion for ecological studies across heterogeneous areas.

In addition, we examine the utility of using different

clustering schemes for high, low, and average flows

and the effects of grouping streams with similar
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regimes but from different geographic regions into

the same flow regime cluster. The conceptual frame-

work and resulting models are useful for a variety of

water resources and watershed management appli-

cations, large-scale biomonitoring studies, and under-

standing the linkages between streamflow, climate,

and physical catchment characteristics.
2. Background

2.1. Study area

The USEPA Environment Monitoring and Assess-

ment Program (EMAP) has collected physical and

biological data from several hundred streams across

the western U.S. (USEPA, 2002). A total of 286

EMAP sites in CO, WA, and OR were selected to

develop and test a hierarchical, process-based river

classification to improve stratification procedures for

modeling biological variation. Nearly all of these sites

occur on ungauged streams, leaving an incomplete

picture of the hydrologic processes structuring biotic

communities. To develop statistical models for

streamflow at these ungauged sites, 162 U.S.

Geological Survey (USGS) high quality streamflow

gauges free of significant deviations from the natural

streamflow pattern and with record lengths greater
Fig. 1. Elevation throughout the study area is shown with lighter shades co

labeled.
than 20 years were identified in CO, WA, and OR.

Most of these gauges are part of the Hydroclimatic

Data Network (HCDN; Slack et al., 1993) with

additional reference gauges identified in CO by Surian

and Andrews (1999) and in WA by Kresch (1993).

The resulting set of gauged sites includes watersheds

of many different sizes, elevations, climatic charac-

teristics, and geologic types. Fig. 1 shows the major

geographic features of the study area. Catchment area

ranges from 4 to 19,632 km2 and average precipitation

is highly variable with 4500 mm per year falling in the

North Fork of the Quinault basin in the Olympic

Mountains to 335 mm per year falling in the Crab

Creek basin in eastern WA. Gauge elevations range

from near sea level to 3180 m for the Michigan River

in CO.

The three states span several climatic zones and 18

ecoregions (Omernik, 1995). Along the Pacific coast,

large cyclonic frontal storms frequently occur in

winter generating 75–80% of the yearly precipitation

(Redmond and Koch, 1991), and high streamflows

with lower flows from April to October. These storms

often produce snow at higher elevations in the

Cascade Range. Generally, the rain-on-snow zone

exists between 400 and 1500 m (Tague and Grant,

2004), where accumulated snow can be completely

melted by a subsequent storm, generating very high

flows. Above 1500 m, snow usually persists through
rresponding to higher elevations. Significant geographic features are
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the winter season with the east side of the Cascades

receiving less snow than the west due to orographic

effects (Rasmussen and Tangborn, 1976). Low-flow

volumes and recession characteristics on the western

slope of the OR Cascades are dominated by geology

(Tague and Grant, 2004). Eastern WA and OR lie in

the rain shadow of the Cascades and receive much less

precipitation. The higher elevations of the Blue and

Wallawa Mountains receive greater amounts of

precipitation relative to the semi-arid eastern uplands

and build a winter snowpack (Western Regional

Climate Center (WRCC) a,b) leading to elevated

spring flows. Higher monthly flows for eastern OR

and WA typically occur in the spring and summer due

to precipitation and snowmelt. Peak flows there can be

generated from a variety of processes including winter

rainstorms, rain-on-snow events, snowmelt, or cloud-

burst thunderstorms (Watershed Professionals Net-

work, LLC, 2001). The mountains of CO accumulate

a winter snowpack with runoff usually commencing in

May and lasting into July with low flows from August

to April. Summer convective thunderstorms and

monsoonal events infrequently produce very large

floods. The diversity of processes generating stream-

flow in these areas makes regionalization difficult yet

essential to the development of models for predicting

ecologically relevant streamflow parameters.
3. Methods

3.1. Streamflow and watershed metrics

A total of 84 streamflow metrics were computed to

characterize the range of flow regimes in the study

region. The Indicators of Hydrologic Alterationq

(IHA; Richter et al., 1996) software was used to

compute 33 streamflow metrics and their coefficients

of variation using daily streamflow data obtained from

the USGS. Olden and Poff (2003), in a study

analyzing 171 published flow metrics, suggested that

IHA sufficiently characterizes most flow regimes but

nevertheless identify additional metrics that may add

significant information. A subset of these additional

metrics was selected for the flow regime types within

the study region based on the recommendations of

Olden and Poff (2003), physical interpretability, and

economy of computation. These metrics were
classified as describing high, low, or average stream-

flow magnitudes for use in the cluster analysis. A

complete description of the final set of 84 streamflow

metrics is provided in Table 1.

A Geographic Information System (GIS) was used

to compute the monthly averages of climatological

variables including precipitation, evapotranspiration,

snowfall, temperature, and solar radiation. Current

PRISM (Daly et al., 1994) data sets were used for

precipitation and snowfall. Evapotranspiration data

were acquired from Hobbins et al. (2001a,b) along

with the spatially distributed temperature and solar

radiation data sets they used. Physical properties of

drainage basins are also important for predicting

certain aspects of the streamflow regime and a review

of streamflow estimation studies revealed many

relevant physiographic basin characteristics. For

instance, flood magnitudes and durations in larger

basins are controlled by the slope and density of the

drainage network (Pitlick, 1994). Variables utilized in

this study include basin elevation, slope, relief, and

soil properties. Geologic differences among sites were

accounted for using a simple classification of

unconsolidated, sedimentary, volcanic, and crystal-

line rock types. A complete list of the climatic and

physiographic metrics is provided in Table 2.

3.2. Regionalization procedure

Such a hydroclimatically variable study area

makes stratification crucial to developing accurate

and interpretable models for streamflow metrics.

Based on the hypothesis that optimal groupings of

sites vary with different types of response variables,

separate clustering schemes were developed using

only high, low, and monthly flows, as well as the

complete set of flow metrics. The high- and low-flow

clustering schemes used the average monthly flow

variables in addition to the respective high- or low-

flow metrics (i.e. for low flows the Mn 1,2,7,30,90d

metrics, NLoPl, Ml22, Fl3, etc.). The average, or

monthly, scheme used only average monthly flows

and the ‘all flow’ scheme encompassed all metrics.

Three general statistical tools were used to create and

subsequently assign ungauged sites to high-, low-,

monthly-, and all-flow groupings. First, principal

components analysis was used to reduce the stream-

flow variable set to variables explaining the most



Table 1

Streamflow regime metrics

Flow metric Description Units Source Pertubation

MAR Mean annual runoff m3/s Sanborn and Bledsoe 0

Flash Avg annual 1-day maximum/average flow over all years – Sanborn and Bledsoe 0

Skew Skewness of daily flows – Sanborn and Bledsoe 0

Avg_Octa Average October flow m3/s IHA 0

Avg_Nova Average November flow m3/s IHA 0

Avg_Deca Average December flow m3/s IHA 0

Avg_Jana Average January flow m3/s IHA 0

Avg_Feba Average February flow m3/s IHA 0

Avg_Mara Average March flow m3/s IHA 0

Avg_Apra Average April flow m3/s IHA 0

Avg_Maya Average May flow m3/s IHA 0

Avg_Juna Average June flow m3/s IHA 0

Avg_Jula Average July flow m3/s IHA 0

Avg_Auga Average August flow m3/s IHA 0

Avg_Sepa Average September flow m3/s IHA 0

Mn1da Average annual 1-day minimum flow m3/s IHA 0

Mn3da Average annual 3-day minimum flow m3/s IHA 0

Mn7da Average annual 7-day minimum flow m3/s IHA 0

Mn30da Average annual 30-day minimum flow m3/s IHA 0

Mn90da Average annual 90-day minimum flow m3/s IHA 0

Mx1da Average annual 1-day maximum flow m3/s IHA 0

Mx3da Average annual 3-day maximum flow m3/s IHA 0

Mx7da Average annual 7-day maximum flow m3/s IHA 0

Mx30da Average annual 30-day maximum flow m3/s IHA 0

Mx90da Average annual 90-day maximum flow m3/s IHA 0

ZeroDa Number of days per year with zero flow – IHA 0

BaseQa 7-day minimum flow divided by mean flow for that year – IHA 0

DatMnb Julian date of the minimum flow – IHA 0

DatMxb Julian date of the maximum flow – IHA 0

NLoPla Average number of low pulses, low pulse defined as

1 standard deviation above the mean

– IHA 1

DLoPla Average duration of low pulses – IHA 1

NHiPla Average number of low pulses, low pulse defined as

1 standard deviation below the mean

– IHA 0

DHiPla Average duration of high pulses – IHA 0

RiseRa Rise rateKmean of all positive differences m3/s/day IHA 0

FallRa Fall rateKmean of all negative differences m3/s/day IHA 2300, 2c

Revsa Number of flow reversals – IHA 0

Ma3 Coefficient of variation of daily flows – Olden and Poff 0

Ma40 (Mean monthly flowKmedian monthly flow)/median monthly flow – Olden and Poff 0.5

Ma41 Mean annual runoff divided by catchment area cm Olden and Poff 0

Ma44bs Average variability in daily flows divided by median daily flows for

each year, where variability is calculated as 90th–10th percentile

– Sanborn and Bledsoe 0

Ml13 CV in minimum monthly flows – Olden and Poff 0

Ml14 Mean of lowest annual daily flow divided by median annual daily

flow averaged across all years

– Olden and Poff 0

Ml22 Mean annual minimum flows divided by catchment area m3/s/km2 Olden and Poff 0

Mh1 Max monthly flow for Oct m3/s Olden and Poff 0

Mh8 Max monthly flow for May m3/s Olden and Poff 0

Mh17 Mean of 25th percentile from the flow duration curve divided by

median daily flow across all years

– Olden and Poff 0

Fl3 Total number of low flow spells (threshold equal to 5% of mean

daily flow) divided by record length in years

– Olden and Poff 0.01

Fh11 Mean number of discrete flood events per year – Olden and Poff 0

(continued on next page)
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Table 1 (continued)

Flow metric Description Units Source Pertubation

Dl13 Mean annual 30-day minimum divided by median discharge – Olden and Poff 0

Dh12 Mean annual 7-day maximum divided by median discharge – Olden and Poff 0

Dh13 Mean annual 30-day maximum divided by median discharge – Olden and Poff 0

Th3 Max proportion of the year (num days/365) during which no floods

have ever occurred over the period of record

– Olden and Poff 0.5

BS1 (Sum(Abs(QtC1KQt))/#days in record)/ Average flow over all

years

– Sanborn and Bledsoe 0

a Indicates CV of that metric was computed.
b Indicates standard deviation of that metric was computed.
c The two numbers are the pertubations for the average and CV, respectively.
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variance in the data. Cluster analysis was then used to

identify distinct flow regime types. Once flow regime

clusters were established, discriminant analysis was

used to predict the flow regime type of an ungauged

site so that the appropriate set of cluster-specific

regression models could be applied. A brief descrip-

tion of these statistical methods follows.

Principal components analysis is an ordination

technique that creates linear combinations of vari-

ables to construct uncorrelated vectors (principal

components, or PCs) that describe the dominant

patterns of variance in the data (Joliffe, 1986). The

PCs are mutually orthogonal, and therefore, uncorre-

lated with the first few ideally containing the most

information. The variables that exhibit the highest

loadings on a PC best explain that dimension of the

data. This method is effective for identifying which

variables explain the most variance, and therefore,

contain the most information especially for data sets

with a large number of variables.

To remove scale dependence from the stream-

flow metrics, monthly flows were expressed as a

percent of mean annual runoff (Haines et al., 1988;

Riggs and Harvey, 1990) and metrics describing

flow magnitudes were normalized by catchment

area. Data were standardized for use in the

principal components analysis and cluster analysis

to ensure each variable had equal weight. Principal

components analysis was performed using the

correlation matrix for the high-, low-, and all-flow

variable sets. The number of variables chosen from

each PC was proportional to the variance explained

by that PC. This yielded a set of significant,

non-redundant streamflow metrics for each flow
variable set to use in the cluster analysis. It is

important to choose a sound set of input variables

for the cluster analysis because redundant variables

can collectively bias the solution towards over-

represented aspects of the flow regime.

Cluster analysis is used to find inherent groupings

within data sets. Distances between data points and

cluster centroids are evaluated and the observation

assigned to the appropriate cluster. Hierarchical

cluster analysis produces a dendrogram, or tree-like

solution that depicts smaller clusters branching from

the larger group to which they belong (Jobson, 1992).

Partitioning methods such as k-means cluster analysis

(Jobson, 1992) allow the number of clusters to be set

and then finds the most effective clustering solution.

Seeds are used to define the cluster centers initially

and sites can be assigned to the nearest centroid; the

seeds are then updated and the process is iteratively

repeated. We utilized PROC FASTCLUS in SASq

(2001) to execute a k-means cluster analysis for each

flow variable set. First, a very coarse solution of 20

clusters was computed and outliers were identified.

Clusters with more than five members were then used

as seeds for the next solution. The solution was refined

to the specified number of clusters with the constraint

that each cluster contained at least five observations.

Canonical discriminant analysis was then performed

and cases, identified by cluster, were plotted on the

first two canonical axes to visually interpret the

statistical quality of the solutions. A good cluster

solution shows respondents in the same cluster closely

spaced and far from other clusters (Hair and Black,

2000). The optimal number of clusters can be chosen

(Milligan and Cooper, 1985) by comparing statistics



Table 2

Drainage basin characteristics

Climatic

Metric Description Units Data Pertubation Period

prcp_mo Mean total monthly precipitation mm PRISM 0 1971–2000

srad_mo Mean monthly solar radiation KJ/m2/day Hobbins et al. 0 1952–1994

avgt_mo Average monthly temperature 8C Hobbins et al. 30 1953–1994

mint_mo Average minimum monthly temperature 8C Hobbins et al. 30 1954–1994

snow_mo Average total monthly snowfall mm PRISM 1 1971–2000

et_mo Average monthly potential evapotranspiration mm Hobbins et al. 4.5 1962–1988

precipr1 Ratio of precipitation in wettest month to that

of the driest

– PRISM 0

precipr2 Ratio of precipitation in the wettest 3 months to

the driest 3 months

– PRISM 0

precip_t Average annual precipitation mm PRISM 0 1971–2000

snow_t Average annual snowfall mm PRISM 1 1971–2000

et_t Average annual potential evapotranspiration mm Hobbins et al. 0 1962–1988

srad_t Average annual solar radiation KJ/m2/day Hobbins et al. 0 1952–1994

nt_ndjfm Average minimum temperature during Nov,

Dec, Jan, Feb, Mar

8C Hobbins et al. 22.9 1953–1994

snow_ppt Ratio of total annual snowfall to total annual

precipitation

– PRISM 0.1

Physiographic

Metric Description Units Pertubation

avg_elev Average basin elevation m 0

min_elev Minimum basin elevation m 1

topo_wet Average basin topographic

wetness—ln(flow accumulation

area)Cln[1/tan(slope)], where

area is in square meters and

slope is in radians

– 0

drainden Drainage density mK1 0

urban_p Percentage of basin that is

urban

– 0.01

shed_slp Average slope of the basin m/m 0

da Drainage area km2 0

relief_r Basin relief divided by its

length

– 0

slp_elon Ratio of the slope of the basin to

the elongation of the basin

mK1 0

ElongationZdiamater of a cir-

cle of the same area as the basin

store_p Percentage of basin that is lakes

or other water storage

– 0.01

chan_slp Average channel slope m/m 0

aspect Average aspect Degrees 0

drain_cl Area weighted soil drainage

class

– 0

n_br_dep Average area weighted mini-

mum depth to bedrock

m 0

forest_p Percentage of basin that is

forested

– 0

for_urb Ratio of forested percentage to

urban percentage

– 0

(continued on next page)
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Table 2 (continued)

Physiographic

Metric Description Units Pertubation

uncons Percentage of basin underlain

by unconsolidated geologic

type

– 0.01

sedim Percentage of basin underlain

by sedimentary geologic type

– 0.01

volcan Percentage of basin underlain

by volcanic geologic type

– 0.01

cryst Percentage of basin underlain

by crystalline geologic type

– 0.01

_mo indicates the metric is computed for each month.
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such as the cubic clustering criterion (CCC; Sarle,

1983), pseudo F-statistic, and root-mean-square

standard deviation (Chiang et al., 2002a), or by

using a stopping rule (Wong and Schaack, 1982;

Ratowsky, 1984). However, the interpretability of the

solution was used as the primary decision factor (Poff,

1996; Haines et al., 1988), in combination with the

CCC and pseudo F-statistic. Plots of the average

monthly streamflows and clustering metrics for each

cluster along with maps of the clusters were

scrutinized to understand the solutions and make

final judgments on the number of clusters.

With distinct flow regime classes determined,

discriminant analysis was used as a classification

tool to assign ungauged sites to the streamflow

clusters derived using cluster analysis based on

watershed characteristics. Twelve watersheds used

in the cluster analysis to create the streamflow clusters

extend into Canada, so these were not used in the

discriminant analysis or regression analyses as the

necessary watershed and climatic data were not

readily available for these sites. Discriminant analysis

constructs linear combinations of variables called

discriminant functions and finds those that can most

effectively partition the predefined groups (Hand,

1981). The watershed data were natural-log trans-

formed to bring data into closer compliance with the

assumption of normality and subjected to a principal

components analysis to identify the most explanatory

variables for the discriminant analysis. Merging

similar variables having high loadings on the same

PC created several new metrics; average minimum

winter temperature (nt_ndjfm), for example.
For discriminant analysis, there should be at least

four observations per predictor per group (Hand,

1997) so a subset of variables thought to be significant

for reflecting cluster differences was entered in SAS’s

PROC STEPDISC, a step-wise discriminant analysis

procedure, to identify the best discriminators. Corre-

lations between the best discriminators were checked

and the best four with Pearson correlations less than

0.75 were used in the PROC DISCRIM procedure.

Quadratic, rather than linear, discriminant functions

were generated to allow for differences in group size.

Cross-validation was used to compute classification

error rates.
3.3. Multiple regression analysis

Multiple regression analysis (MRA) was used to

derive, from gauged sites, equations relating stream-

flow metrics to physical and climatic basin charac-

teristics within streamflow groups. A log-linear model

of the following form is generally used in regional

regression studies:

Q Z kX
b1
1 X

b2
2 .Xbn

n n (3.1)

where Q is the streamflow metric of interest; Xi, 1,.,

n are basin characteristics; k, bi, 1,., n are model

parameters; and n are the lognormally distributed

model errors. When the natural log of this model is

taken, it becomes linear of the form:

lnðQÞZ b0 Cb1lnðX1ÞCb2lnðX2ÞC/

CbnlnðXnÞC3 (3.2)
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where b0Zln(k) and 3Zln(n) are normally distributed

residuals with mean zero and variance s23 .

Error can be partitioned into (1) model error from

parameter estimation and model selection, (2)

measurement error, which includes the cross corre-

lations between sites, and (3) sampling error, which

deals with the varying record lengths of sites.

Ordinary least squares (OLS) regression only

accounts for model error, ignoring both other types.

Tasker (1980) introduced weighted least squares

(WLS), which accounts for model error and sampling

error and Stedinger and Tasker (1985) presented

generalized least squares (GLS) which accounts for

all three types of error. We used WLS with the

weighting scheme utilized by Vogel et al. (1999):

wi Z
ni

Pm
jZ1

nj

(3.3)

where wi is the weight for a site i; ni is the record

length in years for site i; and m is the number of sites

in the cluster.

The PROC REG procedure in SASq (2001) was

used for the MRA. All data were perturbed so values

were greater than zero and then natural-log trans-

formed. Model selection algorithms in SAS limit the

pool of independent variables to approximately the

size of the number of observations before collinearity

errors abound. The pool of predictors was narrowed to

around 50, using the variables we figured would best

stratify the flow regimes. Correlation matrices were

then reexamined and variables eliminated until

collinearity issues were resolved. Monthly precipi-

tation and snow variables were usually reduced to a

few months that adequately represent the seasonal

patterns, and other variables were eliminated by

understanding which variables represent dominant

processes driving streamflow within the particular

flow regime group. Variables eliminated due to high

correlations with others are still largely represented by

the variable retained, so minimal information is lost.

Generally, it is desirable to have at least 10

observations per independent variable used in a

multiple regression model (Hirsch et al., 1993).

With the pool of possible independent variables in

place, Mallows’ Cp was used to select the best set of

models given a constrained number of independent
variables. This set was further examined and the

choice of the final model was made from best

judgment based on physical interpretability, stipulat-

ing primarily that the variance inflation factor (VIF), a

measure of collinearity between independent vari-

ables, be less than 10 (Hirsch et al., 1993) and

secondarily that the adjusted R2 not be greater than

0.02 less than the maximum. Adjusted R2 values

provide a more conservative estimate of model fit

because it accounts for the number of predictors

relative to the number of observations.

Model robustness was evaluated using the PRESS

(prediction residual sums of squares) statistic. In this

procedure, one observation is removed from the data

and the regression model refit. The difference between

the predicted value from the model and actual value at

that point is the prediction residual. This is done for all

points and PRESS is the sum of squares of these

prediction residuals. PRESS can also be used as a

model selection criterion (Hirsch et al., 1993) and

generally agrees with Mallows’ Cp selections (Gilroy

and Tasker, 1990). Model error can be assessed by

examining the root-mean-square error (RMSE) of the

model. Prediction intervals, the error associated with

making a prediction of a single observation, can be

computed as:

SEZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp½s2eð1Cp=mÞ�K1

q
(3.4)

where s2e is the variance of the residuals in the

estimated model ðs2eZ ðRMSEÞ2Þ and is a measure of

model error; p is the number of independent variables

in the model; m is the number of sites in the cluster;

and ps2e =m is the average sampling error (Vogel et al.,

1999).

Model accuracy was assessed by examining both

adjusted R2 and SE values. All values of R2 reported

hereafter are measures of adjusted R2.
4. Results

Regression models were selected for each cluster

contingent on process-based interpretation and the

statistical criteria described above. Many regression

models performed well using any of the regionaliza-

tion schemes. For the high-, low-, and average-

clustering schemes 39, 36, and 39%, respectively, of
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the metrics for which models were derived had values

of R2 greater than 0.80 for all flow regime types.

However, comparing the R2 values for individual

metrics using the appropriate high-, low- or monthly-

flow classifications versus the ‘all-flow’ stratification

indicated that these schemes did not provide

significant overall improvement. The average R2

value decreased by 0.01 for models in the snowmelt

cluster and 0.03 for rain and snow cluster models.

Rain cluster models improved by an average R2 of

0.09 and the variable stream models showed a marked

0.12 decrease in R2. These disparities can be attributed

to differences in sample size that result in allowing

more independent variables into the rain models and

less into the models for variable streams. R2 values for

monthly flows were generally not affected by the

clustering scheme used while model R2 values

describing flow magnitude variability were poorer.

Accordingly, the ‘all-flow’ clustering scheme was

used to develop models for all streamflow metrics and

the following sections focus exclusively on these

results.

4.1. Variable reduction and streamflow regime

stratification

Principal components analysis was performed for

all streamflow metrics to identify the variables

describing the most variance in the data (Table 3).

Each PC can be said to describe a specific ‘dimension’

of variability among flow regimes. The first PC (PC1),

which accounts for 27.5% of the total variance, can be

interpreted as a high-flow axis. Mean annual runoff

per drainage area (Ma41) is biased towards high

flows, average November flow (PMAR_NOV) corre-

sponds to high flow for streams along the Pacific

coast, and the number of high pulses (NHiPl) and

maximum 90 day flow (Mx90d) are direct measures of

high-flow events. For PC2, average March flow

(PMAR_Mar) and the coefficient of variation (CV)

of January average flows (CV_Jan) are positively

loaded while average July flow (PMAR_Jul) has a

negative loading. This PC represents flow variability,

as flow regimes with high flows in March tend to be

flashier with higher coefficients of variation of

monthly flows, those with high flows in July have

lower coefficients of variation, and CV_Jan is a direct

measure of flow variability that is correlated with the
overall variability. PC3 and PC4 are best interpreted

as characterizing low-flow magnitudes and low-flow

variability, respectively.

The metrics identified by the principal components

analysis were used in the cluster analysis and a four-

cluster solution was selected based primarily on the

physical interpretability with attention to clustering

statistics. Also, the discriminant analysis classifi-

cation error rate for the five-cluster solution was

considerably higher. Fig. 2 shows the result from a

canonical discriminant analysis of the cluster solution.

This procedure is a dimension reduction technique

similar to principal components analysis, except it

identifies vectors, which describe the most between-

group variation (SASq, 2001). The axes, canonical

variables 1 and 2, have the same hydrologic

interpretation as PC1 and PC2, respectively. The

groups are quite distinct in this plot, with little

overlap. Cluster 3 loads highest on the high-flow axis

followed by clusters 2 and 4. Cluster 4, the most

diffuse cluster, clearly has the highest loading on the

variability axis with the other three clusters having

similarly low values.

The cluster solution has a strong geographic

relation, as evidenced by a map of the gauges marked

by streamflow cluster (Fig. 3), but is not entirely

geographically dependent. Sites in clusters 2 and 3 are

located predominately along and west of the Cascade

crest with cluster 3 watersheds located mostly on the

Olympic Peninsula and western slope of the North

Cascades. Cluster 4 watersheds encompass most of

eastern WA and OR with two additional sites in

western CO. Cluster 1 watersheds cover nearly all of

CO and much of the North Cascades. Plotting the

average of the monthly flows for the streams of each

cluster (Fig. 4) provides a general idea of the

streamflow regime type associated with each cluster.

Cluster 1 exhibits a strong snowmelt signal with high

flows from April to July and low flows the rest of the

year. These watersheds are located in the higher

elevations of the CO Rockies and North Cascades, and

one watershed is in the Wallowa Mountains. High

winter flows define the cluster 2 signal, a result of the

consistent cyclonic frontal storms bringing winter

rains to the coastal regions. A bit of influence from

snow can be detected from the persistence of the high

flows into the late spring. Cluster 3 also shows

evidence of these frontal rains with high winter flows,



Table 3

Variables with the highest loadings on the first four principal

components, with the percent of variation explained by each PC in

parentheses

PC 1 (27.5%) PC 2 (21.1%) PC 3 (11.8%) PC 4 (6.9%)

Ma41 PMAR_Mar BaseQ CV_Mn30d

PMAR_Nov PMAR_Jul M113

NHiPl CV_Jan

Mx90d

Descriptions of the streamflow variables are provided in Table 1.
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but has a smaller secondary peak in May due to

snowmelt. Clusters 2 and 3 have similar monthly flow

signals, but when individual streamflow metrics used

in the cluster analysis are examined, their differences

become more evident. Cluster 3 has higher magnitude

long-term high flows (Mx90d), higher basin runoff

production per drainage area (Ma41), more high-flow

pulses (NHiPl), and somewhat less low-flow variation

(CV_Mn30d). Cluster 4 has a general increase in flow

beginning in November with a peak in May. This

signal is the result of winter and spring rains, rain-on-

snow events, and snowmelt affecting sites in eastern

WA and OR. The 2 CO sites included in cluster 4 are a

result of the aridity and, therefore, higher variability

of these streams.
Fig. 2. Plot of the ‘all-flow’ clustering solution on the first t
4.2. Determination of flow regime for ungauged

streams

The step-wise discriminant analysis selected

average annual precipitation (precip_t), average

August precipitation (prcp_aug), nt_ndjfm, and

average annual snowfall (snow_t) as the variables

that best discriminate between the four streamflow

regime clusters. The maximum correlation between

these variables is K0.62, between snow_t and

nt_ndjfm. The error rate for classifying the streamflow

regime based on these watershed variables determined

by leave-one-out cross validation is 13.29%. Six

errors occurred when cluster 2 streams were classified

as cluster 3. Four additional errors resulted from the

misclassification of cluster 4 as snowmelt or rain

streams. Box-and-whisker plots of the within-cluster

distributions of watershed variables used in the

discriminant analysis were created (Fig. 5) to

facilitate interpretation of the discriminant analysis

and the climatic properties of each cluster. As

expected, clusters 2 and 3 receive much more

precipitation than 1 and 4, with cluster 3 receiving

the most. Cluster 1 has the highest snowfall, followed

by cluster 3, then clusters 1 and 4. August

precipitation effectively differentiates clusters 1 and
wo axes identified by canonical discriminant analysis.



Fig. 3. USGS reference gauges classified by the ‘all-flow’ regime types superimposed on level 3 ecoregions.
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4, and clusters 2 and 3. The nt_ndjfm metric provides

further stratification for the snowmelt streams. The

discriminant analysis essentially synthesizes the

information contained in these plots so the flow

regime type of ungauged streams can be accurately
Fig. 4. Average monthly flows by flow regime type ex
predicted. Equipped with a practical understanding of

the clusters, we hereafter refer to cluster 1 (mZ61) as

a ‘snowmelt’ regime, cluster 2 (mZ47) as a ‘rain’

regime, cluster 3 (mZ22) as a ‘rain and snow’ regime,

and cluster 4 (mZ20) as a ‘variable’ regime.
pressed as a proportion of mean annual runoff.
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4.3. Cluster-specific regression models

Generally, the models for predicting various stream-

flow magnitudes were more accurate than models

predicting high- and low-flow pulses and flow varia-

bility. In all, 26 streamflow metrics could be predicted

well with R2 greater than 0.65 for all streamflow regime

types and seven more for every type except ‘variable’.

Nine metrics could be predicted with a value of R2

greater than 0.89 for every type. The independent

variables, parameter values, R2, standard error, PRESS

RMSE, and maximum VIF for these 33 models are

shown in Tables 4a–4d. There were 19 metrics, which

could not be predicted with an R2 greater than 0.65 in

any region, including CV_Jan, CV_Feb, CV_Mar,
Fig. 5. Box-and-whisker plots depicting the distribution of watershed va

standard errors of the mean and the whiskers encompass all other points e
CV_Jul, CV_Aug, CV_Mn1, CV_Mn3, CV_Mn7,

CV_Mn30, CV_Mn90d, NLoPl, CV_NLoPl, DHiPl,

CV_DHiPl, skew, revs, Ml13, Fh11, and Th3.

To test the validity of clusters spanning such

diverse regions, regression models for the ‘snowmelt’

cluster were generated separately for CO and Pacific

Northwest (PNW) streams. Models for the entire

cluster are biased towards CO streams, which account

for 48 out of the 61 observations, so differences

between models for the combined cluster and CO

streams alone are small. However, 27 of the models

constructed using only PNW streams outperform

models for the entire cluster by a difference in R2 of

at least 0.20, despite a reduction in the number of

independent variables from four to two.
riables by flow regime class. The box represents data within two

xcept the outliers and extremes shown.



Table 4a

Selected regression models and statistics for streams in the ‘snowmelt’ cluster

Metric Adj. R2 Var1 Var2 Var3 Var4 k b1 b2 b3 b4 MaxVIF PRESS

RMSE

SE

MAR 0.985 prcp_mar drainden shed_slp da K8.5606 1.1799 0.5081 0.9078 0.8995 2.01 0.0291 0.0287

Avg_Oct 0.976 snow_-

mar

shed_slp da store_p K14.8247 0.9298 1.5085 1.0415 0.6134 1.58 0.0407 0.0391

Avg_Nov 0.981 shed_slp da precip_t snow_jun K19.6069 0.8701 1.0615 1.5318 0.0993 1.87 0.0386 0.0378

Avg_Dec 0.977 shed_slp da precip_t snow_jun K21.1856 0.8278 1.0865 1.7363 0.1013 1.87 0.0444 0.0434

Avg_Jan 0.973 shed_slp da precip_t snow_jun K20.9027 0.7826 1.0944 1.6939 0.0881 1.87 0.0480 0.0468

Avg_Feb 0.976 prcp_feb snow_dec shed_slp da K10.9531 1.6658 K0.6858 0.6635 1.0771 7.09 0.0460 0.0451

Avg_Mar 0.985 prcp_feb topo_wet snow_dec da K3.3398 1.8280 K2.6905 K0.8019 1.1043 6.18 0.0364 0.0361

Avg_Apr 0.977 da forest_p precip_t snow_jun K16.3934 0.9762 0.5625 1.9426 K0.2692 1.34 0.0467 0.0450

Avg_May 0.963 prcp_mar drainden da forest_p K6.4628 1.7131 0.4733 0.8624 0.6314 1.06 0.0489 0.0477

Avg_Jun 0.969 prcp_mar shed_slp da precipr2 K10.5847 1.2313 0.9698 0.8595 K1.1762 1.85 0.0395 0.0388

Avg_Jul 0.969 shed_slp da store_p snow_t K15.1914 1.5886 0.9022 0.5971 0.9971 1.68 0.0412 0.0401

Avg_Aug 0.971 shed_slp da store_p snow_jun K6.7321 1.5718 0.9537 0.9715 0.2095 1.50 0.0411 0.0403

Avg_Sep 0.963 prcp_sep shed_slp da snow_jun K16.3489 1.5391 1.1352 1.0032 0.2592 1.63 0.0467 0.0459

Mn1d 0.961 prcp_mar shed_slp da snow_jun K15.6689 1.0723 0.9756 1.0871 0.1504 1.72 0.0552 0.0533

Mn3d 0.963 prcp_mar shed_slp da snow_jun K15.5586 1.0720 0.9642 1.0852 0.1470 1.72 0.0538 0.0520

Mn7d 0.964 prcp_mar shed_slp da snow_jun K15.4495 1.0699 0.9527 1.0863 0.1415 1.72 0.0527 0.0509

Mn30d 0.969 prcp_mar shed_slp da snow_jun K15.3019 1.0937 0.9239 1.0909 0.1226 1.72 0.0493 0.0479

Mn90d 0.973 prcp_mar shed_slp da snow_jun K15.4431 1.1688 0.8983 1.1034 0.1157 1.72 0.0462 0.0454

Mx1d 0.974 prcp_mar drainden shed_slp da K4.9384 1.2280 0.6231 0.7461 0.8129 2.01 0.0361 0.0350

Mx3d 0.973 prcp_mar drainden shed_slp da K5.1138 1.2299 0.6014 0.7292 0.8139 2.01 0.0369 0.0359

Mx7d 0.974 topo_wet snow_jan da forest_p 1.7558 K5.9751 1.1355 0.8346 0.3622 1.38 0.0352 0.0352

Mx30d 0.973 topo_wet snow_jan da forest_p 1.7423 K6.0901 1.1266 0.8392 0.3734 1.38 0.0359 0.0356

Mx90d 0.976 topo_wet snow_jan da forest_p 2.0167 K6.6613 1.1445 0.8752 0.3488 1.38 0.0353 0.0352

CV_M-

x90d

0.698 drainden shed_slp precipr2 snow_t 1.3337 K0.2917 K0.3668 0.2252 K0.3839 1.62 0.0212 0.0188

DatMn 0.753 avg_elev shed_slp volcan snow_jun 2.7693 0.2901 0.1814 K0.0112 0.0382 1.29 0.0095 0.0092

DatMx 0.713 prcp_jan snow_nov shed_slp precipr1 6.0407 K0.0361 0.0438 0.0247 K0.0189 5.80 0.0019 0.0018

RiseR 0.975 prcp_mar drainden shed_slp da K8.2033 1.1902 0.7508 0.9321 0.7963 2.01 0.0351 0.0342

FallR 0.769 topo_wet da store_p chan_slp 3.8734 0.1681 K0.0082 K0.0178 0.0257 1.43 0.0017 0.0016

Ma3 0.647 prcp_sep snow_oct da snow_jun 1.7476 K0.4002 0.1944 K0.0816 K0.1184 1.96 0.0164 0.0159

Ma41 0.934 prcp_mar shed_slp slp_elon precipr2 K3.8122 1.1991 0.7590 K0.3091 K0.7663 1.96 0.0284 0.0269

Ml22 0.756 prcp_mar prcp_may shed_slp snow_jun K10.3171 1.7104 K1.0820 0.5618 0.1940 3.69 0.0539 0.0524

Mh1 0.975 prcp_oct shed_slp da store_p K7.6770 0.7715 0.9322 0.9585 0.6949 2.30 0.0427 0.0418

Mh8 0.975 prcp_mar da slp_elon snow_jun K6.5325 1.1159 0.9453 K0.3921 K0.1847 2.58 0.0400 0.0389
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5. Discussion

Although we only present results from the ‘all-

flow’ stratification scheme, each cluster solution

produced many models with R2 values exceeding

0.80. Many of the differences in model performance

between the ‘all-flow’ and high-, low-, or average-

flow clustering schemes could be attributed to

differences in sample size. The cluster solutions

were not markedly different among the high, low,

and average schemes. Many sites were consistently

classified together, which suggests that the flow

regimes modeled in this study are fairly distinct in

all three magnitude classes and have a high

predictability component due to periodicity in the

climatic processes driving streamflow. Thus, the ‘all-

flow’ clustering solution collectively characterized

the differences in each component of the flow regime.

Analyses of data sets containing streams with flashier,

less periodic regime types might garner additional

benefits from a multi-faceted clustering scheme based

on high, low, and average flows. For example, two

streams might have low flows primarily driven by

similar processes and characteristics such as geology

and storage area, yet have high flows that behave quite

differently due to climatological differences. High and

low flows could then be predicted using models from

separate clustering schemes, which more accurately

represent processes driving that particular aspect of

the flow regime. Technically, there is an optimal

cluster solution for each metric, but it is not practical

to develop a clustering solution for each streamflow

metric.

In this study, the ‘all-flow’ scheme produced

interpretable regression models with acceptable

standard errors and R2 values. Drainage area (da)

was the best predictor for models estimating flow

magnitudes. Eleven predictive models for monthly

average flows normalized by drainage area had R2

values greater than 0.70 for all flow regime types. The

normalized maximum and minimum 1-, 3-, 7-, 30-,

and 90-day flow models had R2 values greater than

0.78 and 0.59, respectively, for all flow regime types.

This demonstrates that streamflow drivers other than

basin scale are well represented in the models. In the

‘variable’ regime grouping, models had higher

standard errors than other flow regime types because

of the variability associated with streams in more arid
regions (Vogel et al., 1999) and typically had the

lowest R2 value for a particular model in any region.

The ‘rain’ cluster produced models with R2 values

greater than 0.65 for 25 metrics in addition to those

listed in Table 4b, the most of any flow regime type.

This is likely due to the predictability of frontal winter

rains driving streamflow. For these streams, snow is a

principal source of flow variability as evidenced by

the number of snow metrics appearing in the models

of flow variation. The ‘rain and snow’ streams

produced 14 additional robust models despite a

small sample size that limited models to two

independent variables. Again, this can be attributed

to the regional climatic predictability and its direct

link to streamflow. Models predicting monthly, and

maximum and minimum 1-, 3-, 7-, 30-, and 90-day

flow magnitudes for ‘snowmelt’ streams are excep-

tional (R2O0.95), but the CVs of these metrics are

not, with many R2 values less than 0.65.

Geographically separating the ‘snowmelt’ cluster

improved models of flow variability for both CO and

PNW streams but did not substantially improve

monthly, maximum, or minimum flow magnitude

models. The relatively poor performance of some

models based on all snowmelt sites indicates that they

do not adequately represent the processes controlling

certain aspects of the regional snowmelt regimes.

Measures of monthly variability are higher for CO

than for the PNW streams from May to September but

lower the rest of the year. Although the snowpack is

generally more variable in the PNW than in CO

(Serreze et al., 1999), the PNW streams selected for

this study have consistently larger drainage areas that

likely mask yearly micro-climatic variation, leading

to less overall variability. We hypothesize that this

combined with greater storage in deeper PNW

snowpacks and more gradual spring warming

produces greater consistency in monthly flows during

the snowmelt season. During the remainder of the

year, CO streams experience baseflow conditions

while PNW streams receive considerable amounts of

rain, resulting in more variable monthly flows.

Although the monthly signals for these regimes are

quite similar, examining the regimes on a daily time

scale reveals that CO streams almost never deviate

from baseflow conditions in the winter but PNW

streams can have large events due to rain or rain-on-

snow events. This explains why many metrics



Table 4b

Selected regression models and statistics for streams in the ‘rain’ cluster

Metric Adj. R2 Var1 Var2 Var3 Var4 Intercept B1 B2 B3 B4 MaxVIF PRESS

RMSE

SE

MAR 0.984 prcp_sep da precip_t et_t K19.3589 0.4215 1.0026 1.1640 0.8154 6.31 0.0203 0.0191

Avg_Oct 0.959 prcp_sep shed_slp da nt_ndjfm K5.6412 1.8489 K0.5861 1.0740 K1.6135 1.47 0.0347 0.0337

Avg_Nov 0.961 prcp_jun prcp_nov da nt_ndjfm K16.9275 0.5293 1.4439 0.9987 1.1491 1.71 0.0317 0.0307

Avg_Dec 0.970 da precip_t et_t nt_ndjfm K26.2560 0.9838 1.8804 0.7342 1.4917 2.25 0.0298 0.0271

Avg_Jan 0.977 da precip_t et_t nt_ndjfm K25.3508 0.9933 1.6679 0.7330 1.7061 2.25 0.0272 0.0245

Avg_Feb 0.976 da precip_t et_t nt_ndjfm K24.1348 0.9896 1.5311 0.7997 1.4803 2.25 0.0278 0.0247

Avg_Mar 0.976 snow_feb da precip_t et_t K24.0077 K0.2172 0.9757 1.6264 1.5002 2.18 0.0261 0.0237

Avg_Apr 0.974 prcp_mar prcp_sep da et_t K19.6544 0.4999 0.8443 0.9496 1.5693 4.26 0.0257 0.0240

Avg_May 0.966 prcp_may da et_t nt_ndjfm K3.9309 1.0802 0.9999 0.4665 K2.4604 1.41 0.0334 0.0296

Avg_Jun 0.960 prcp_apr da store_p nt_ndjfm 4.5331 0.9773 1.0072 0.2677 K3.9622 1.79 0.0405 0.0371

Avg_Jul 0.935 prcp_sep topo_wet da nt_ndjfm K0.7407 1.4643 2.1757 1.1491 K4.9952 1.54 0.0541 0.0533

Avg_Aug 0.909 prcp_sep topo_wet da nt_ndjfm K2.6973 1.4408 2.9956 1.1808 K5.0583 1.54 0.0678 0.0671

Avg_Sep 0.920 prcp_sep shed_slp da nt_ndjfm 2.5823 1.7975 K0.9668 1.2119 K4.3769 1.47 0.0584 0.0585

Mn1d 0.902 prcp_sep shed_slp da nt_ndjfm 7.5430 1.5530 K1.2514 1.2770 K5.6917 1.47 0.0736 0.0729

Mn3d 0.905 prcp_sep shed_slp da nt_ndjfm 7.4702 1.5753 K1.2247 1.2811 K5.7306 7.19 0.0398 0.0719

Mn7d 0.906 prcp_sep shed_slp da nt_ndjfm 7.3033 1.5903 K1.2004 1.2789 K5.7075 1.47 0.0724 0.0713

Mn30d 0.909 prcp_sep shed_slp da nt_ndjfm 6.5248 1.6173 K1.1141 1.2605 K5.4993 7.19 0.0380 0.0681

Mn90d 0.922 prcp_sep shed_slp da nt_ndjfm 4.5598 1.7106 K0.9579 1.2247 K4.9754 1.47 0.0716 0.0595

Mx1d 0.939 prcp_nov shed_slp da nt_ndjfm K14.4183 0.8943 0.6815 0.8949 2.2065 1.50 0.0373 0.0367

Mx3d 0.951 prcp_nov shed_slp da nt_ndjfm K14.4360 0.9520 0.5619 0.9196 2.1024 5.24 0.0174 0.0335

Mx7d 0.958 prcp_nov shed_slp da nt_ndjfm K14.3472 1.0076 0.4625 0.9360 1.9425 1.50 0.0344 0.0312

Mx30d 0.968 da precip_t et_t snow_ppt K18.8321 0.9671 1.4385 0.8906 K0.2071 5.46 0.0178 0.0267

Mx90d 0.973 da precip_t et_t snow_ppt K18.9973 0.9745 1.4478 0.8508 K0.1838 1.50 0.0327 0.0246

CV_M-

x90d

0.651 prcp_feb prcp_jun shed_slp nt_ndjfm K1.7602 K0.2122 K0.2463 0.1811 0.6614 1.56 0.0166 0.0164

DatMn 0.687 drainden slp_elon volcan snow_ppt 5.4138 K0.0248 K0.0365 K0.0261 0.0606 2.46 0.0070 0.0046

DatMx 0.708 prcp_oct avg_elev sedim nt_ndjfm 6.9760 K0.0662 K0.0323 K0.0061 K0.1647 5.07 0.0029 0.0027

RiseR 0.930 prcp_nov shed_slp da nt_ndjfm K20.5627 1.0357 0.8901 0.8274 2.8064 1.50 0.0388 0.0381

FallR 0.699 da store_p drain_cl snow_ppt 2.7120 K0.2320 K0.5433 0.4035 0.2006 1.43 0.0838 0.0483

Ma3 0.849 prcp_sep shed_slp store_p nt_ndjfm K7.2073 K0.2607 0.5818 K0.1086 1.9934 1.45 0.0201 0.0193

Ma41 0.925 prcp_sep drain_cl precip_t et_t K13.5765 0.3613 0.1432 1.2760 1.0411 6.89 0.0196 0.0182

Ml22 0.758 prcp_sep shed_slp da nt_ndjfm 9.4463 1.5530 K1.2514 0.2770 K5.6917 1.47 0.0736 0.0729

Mh1 0.934 snow_apr snow_dec da precip_t K16.9771 0.3759 K0.4667 1.0702 1.9439 7.64 0.0428 0.0429

Mh8 0.955 prcp_apr da et_t nt_ndjfm K6.4825 0.9752 0.9664 0.8258 K2.0676 1.73 0.0368 0.0330
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describing flow at a daily time scale (e.g. Ma3, Ma44,

CV_Mn1d, CV_Mn3d, Dh12, NHiPl) had R2 values

that were improved by more than 0.20 when treating

PNW streams separately.

This study suggests that geographically indepen-

dent stratification within the confines of broad

climatic regions is an appropriate strategy for

modeling suites of streamflow metrics. Spatially

contiguous regions are inherently deficient for

regions of considerable climatic or topographic

heterogeneity because they fail to reflect the

patchiness of key processes driving streamflow

including precipitation and temperature. Geographi-

cally independent approaches make physical sense

for heterogeneous regions and can result in robust

models as in Chiang et al. (2002a,b), but there

appear to be limits to this approach. Caution should

be exercised when mixing sites from different

hydroclimatic and geologic regions as the benefits

of an increased sample size may be offset by loss

of model fidelity to processes for certain types of

metrics. Selecting an appropriate level of stratifica-

tion is critical to any study where groupings are

necessary to facilitate accurate predictive modeling,

but these groups cannot be ‘unacceptably hetero-

geneous’ (Gabriele and Arnell, 1991). A hierarch-

ical clustering technique could facilitate the

investigation of alternative clustering solutions for

each streamflow type by selecting a different

significance level in the dendrogram from which

to select the solution. More robust descriptors of

the driving processes, especially climatic and

geologic heterogeneity in mountainous regions,

may further reduce the need for geographically

dependent regionalization schemes.

The numerous streamflow metrics modeled in

this study provide information that is potentially

useful in identifying which hydrologic character-

istics best explain taxonomic and functional

variation in stream biota. For example, maximum

and minimum flow metrics coupled with infor-

mation about numbers and durations of flow pulses

provide a first-order approximation of relative flow

disturbance in the ungauged streams, an important

influence on benthic macroinvertebrate communities

(Resh et al., 1988; Townsend et al., 1997; Wood

et al., 2000; Matthaei and Townsend, 2000). Flow

timing is also very important for many ecological
studies due to interactions between streamflow and

the specific needs of aquatic and riparian biota at

different life stages. Predicted monthly streamflow

signals combined with other metrics unique to this

study, such as the average and standard deviation

of the date of maximum flow, could be useful in

guiding the introduction of spring spawning fish

whose success depends upon survival of fry that are

susceptible to high flows (Poff and Allan, 1995;

Fausch et al., 2001). The resulting framework and

metrics also have implications for restoration

activities on ungauged or poorly gauged streams

that could benefit from estimates of pre-disturbance

flow regime metrics including channel-forming

discharges for geomorphic design. In general,

metrics thought to be directly linked to a specific

ecological question can be carefully chosen,

clustered on, and modeled using the framework

developed in this study.

Cottonwood (Populus spp.) recruitment is another

example of an ecological process that is strongly

controlled by specific streamflow components. High

flows create and transport seeds to nursery sites at an

elevation 60–150 cm above the base flow stage. Seeds

must be deposited on the falling limb of the hydrograph

and the stage must not fall at a rate greater than

approximately 2.5 cm/day so the roots can retain

contact with the receding moisture zone. The sub-

sequent summer and autumn flows must be high

enough to provide water to the seedling (Mahoney and

Rood, 1998). The magnitude, timing, duration, and the

rate of change offlowsmust be known to determine if a

specific site has suitable flows for recruitment. For

snowmelt streams, models for monthly flows, the one-

day annual maximum flow, and its average date of

occurrence all have R2 values greater than 0.76. Such

information could be useful, for example, in restoring a

severely disturbed ungauged stream. Relevant flow

metrics could be estimated, and channel cross sections

and floodplain elevations designed such that the

criteria of the ‘recruitment box’ are met, thereby

increasing the likelihood of cottonwood regeneration.

Because many of the metrics related to riparian

processes are dependent upon precipitation, themodels

could also be used as part of a broader framework for

exploring the potential ramifications of climate change

for riparian and aquatic communities across large

regions.



Table 4c

Selected regression models and statistics for streams in the ‘rain and snow’ cluster

Metric Adj. R2 Var1 Var2 Intercept B1 B2 MaxVIF PRESS

RMSE

SE

MAR 0.980 da precip_t K9.3414 0.9832 0.8702 1.01 0.0244 0.0240

Avg_Oct 0.928 prcp_aug da K7.7405 1.4269 0.8311 1.10 0.0496 0.0483

Avg_Nov 0.901 da precip_t K14.8134 0.9608 1.6054 1.01 0.0602 0.0567

Avg_Dec 0.908 da nt_ndjfm K7.0897 0.8769 1.9647 1.00 0.0642 0.0572

Avg_Jan 0.923 da nt_ndjfm K7.8816 0.8775 2.1927 1.00 0.0615 0.0541

Avg_Feb 0.917 da nt_ndjfm K7.9171 0.8669 2.1940 1.00 0.0629 0.0558

Avg_Mar 0.934 da nt_ndjfm K7.6878 0.8928 1.9971 1.00 0.0557 0.0488

Avg_Apr 0.937 prcp_may da K7.5406 1.0907 0.9600 1.03 0.0497 0.0454

Avg_May 0.912 da snow_t K5.4565 1.0195 0.3556 1.02 0.0686 0.0620

Avg_Jun 0.857 da snow_t K7.6108 1.0360 0.5881 1.02 0.1137 0.0942

Avg_Jul 0.855 da nt_ndjfm 5.3240 1.2034 K3.3414 1.00 0.1019 0.1040

Avg_Aug 0.844 da nt_ndjfm 4.1836 1.1380 K3.0271 1.00 0.0994 0.1007

Avg_Sep 0.851 da precipr1 0.3407 0.8722 K1.4835 1.11 0.0892 0.0842

Mn1d 0.912 da precipr2 0.2086 1.0131 K6.3067 1.09 0.0711 0.0681

Mn3d 0.913 da precipr2 0.2895 1.0151 K6.3934 1.07 0.0380 0.0679

Mn7d 0.913 da precipr2 0.5091 1.0088 K6.5622 1.09 0.0709 0.0683

Mn30d 0.909 da precipr2 1.1670 0.9944 K7.0076 1.04 0.0386 0.0705

Mn90d 0.900 da precipr2 2.3028 0.9558 K7.5684 1.09 0.0714 0.0744

Mx1d 0.914 da nt_ndjfm K3.4346 0.8809 1.3066 1.00 0.0528 0.0507

Mx3d 0.925 da nt_ndjfm K3.7236 0.8882 1.2832 1.62 0.0241 0.0473

Mx7d 0.931 da nt_ndjfm K3.7403 0.8945 1.1600 1.00 0.0489 0.0449

Mx30d 0.953 da precip_t K9.3143 0.9517 1.0118 1.77 0.0244 0.0367

Mx90d 0.959 prcp_dec da K6.3569 0.7531 0.9803 1.00 0.0460 0.0337

CV_Mx90d 0.657 slp_elon forest_p K1.4203 0.1103 0.5641 1.23 0.0249 0.0195

DatMn 0.857 topo_wet forest_p 6.0589 K0.2972 K0.6780 1.01 0.0103 0.0093

DatMx 0.872 store_p sedim 6.0946 0.0458 K0.0169 1.41 0.0058 0.0046

RiseR 0.882 da nt_ndjfm K6.8858 0.8137 1.5863 1.00 0.0612 0.0588

FallR 0.680 da sedim 4.8126 K0.1358 K0.0243 1.01 0.0158 0.0160

Ma3 0.818 precipr2 nt_ndjfm K2.8543 1.3477 0.6534 1.15 0.0212 0.0198

Ma41 0.766 sedim precip_t K0.1296 0.0419 0.7222 1.23 0.0213 0.0202

Ml22 0.789 prcp_aug nt_ndjfm K6.2016 1.8594 K1.4248 1.01 0.0550 0.0528

Mh1 0.917 da precip_t K11.7462 0.8994 1.3137 1.01 0.0477 0.0475

Mh8 0.936 avg_elev da K4.9727 0.4609 1.0141 1.00 0.0510 0.0484
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This study describes a generalized methodological

approach for conducting future large-scale flow

prediction studies. Due to the growing interest in

efficiently characterizing the entire streamflow regime

at sites spanning disparate regions, robust stratification

schemes are critical.Numerous ecological studies have

successfully distinguished flow regimes, but have not

examined the feasibility of predicting a comprehensive

suite of streamflow metrics for ungauged sites. This

study represents a synthesis of ideas from various

streamflow regionalization and prediction studies to

provide a holistic approach to broad-scale flow regime

modeling based on hydroclimatic processes. To

improve this framework, more advanced statistical

procedures such as artificial neural networks or genetic
algorithms could be used to develop models for

metrics, which could not be predicted accurately

using MRA. CART analysis (De’ath and Fabricius,

2000) could potentially improve the clustering pro-

cedure and eliminate the need for discriminant

analysis. These methods use complex algorithms that

can better represent non-linearity and may provide

more accurate models than standard multivariate

statistical techniques for certain streamflow metrics.
6. Conclusions

Themethodology developed in this study provides a

means for classifying streamflow regime types and



Table 4d

Selected regression models and statistics for streams in the ‘variable’ cluster

Metric Adj. R2 Var1 Var2 Intercept B1 B2 MaxVIF PRESS

RMSE

SE

MAR 0.934 da precip_t K21.6712 1.0483 2.4845 1.51 0.0780 0.0771

Avg_Oct 0.837 da precip_t K28.0866 1.1291 3.1619 1.51 0.1413 0.1370

Avg_Nov 0.886 da precip_t K32.8239 1.1832 3.9093 1.51 0.1184 0.1191

Avg_Dec 0.836 da precip_t K32.6315 1.2257 3.9102 1.51 0.1483 0.1511

Avg_Jan 0.837 da precipr1 K8.3535 1.0292 1.4883 1.15 0.1492 0.1504

Avg_Feb 0.885 da precipr1 K7.9582 1.0685 1.2783 1.15 0.1242 0.1238

Avg_Mar 0.904 da precip_t K20.6470 1.1577 2.2728 1.51 0.1035 0.1054

Avg_Apr 0.909 da forest_p K3.1044 0.8656 0.6402 1.02 0.0941 0.0966

Avg_May 0.835 da forest_p K2.2767 0.7592 0.7731 1.02 0.1348 0.1264

Avg_Jun 0.726 da precip_t K20.4987 0.9942 2.3775 1.51 0.1839 0.1669

Avg_Jul 0.774 da precip_t K22.1950 1.0601 2.3833 1.51 0.1693 0.1578

Avg_Aug 0.682 da precip_t K22.1830 1.0253 2.3098 1.51 0.2039 0.1916

Avg_Sep 0.702 da precip_t K24.2773 1.0708 2.5794 1.51 0.2037 0.1910

Mn1d 0.612 snow_jun da K7.8875 0.8126 0.8811 1.04 0.2528 0.2533

Mn3d 0.617 da precip_t K28.6421 1.1588 3.0548 1.51 0.2551 0.2482

Mn7d 0.623 da precip_t K28.3881 1.1427 3.0443 1.51 0.2498 0.2418

Mn30d 0.663 da precip_t K27.5595 1.1267 2.9658 1.51 0.2292 0.2191

Mn90d 0.733 da precip_t K27.4214 1.1542 2.9612 1.51 0.2007 0.1906

Mx1d 0.834 da precipr1 K3.3689 0.7815 0.9598 1.15 0.1215 0.1121

Mx3d 0.863 da precip_t K16.9177 0.9341 2.1678 1.51 0.1068 0.1026

Mx7d 0.897 da precip_t K16.8853 0.9482 2.1171 1.51 0.0911 0.0890

Mx30d 0.917 da precip_t K17.0229 0.9623 2.0607 1.51 0.0817 0.0804

Mx90d 0.925 da precip_t K18.7829 1.0029 2.2326 1.51 0.0811 0.0794

CV_Mx90d 0.547 prcp_may volcan 2.0539 K0.7398 K0.0832 1.03 0.0376 0.0377

DatMn 0.341 forest_p precip_t 4.0159 K0.0974 0.2351 1.56 0.0308 0.0222

DatMx 0.795 precip_t snow_t 5.9388 K0.1332 0.1360 1.13 0.0074 0.0072

RiseR 0.785 da precipr1 K6.9021 0.7524 1.0142 1.15 0.1373 0.1280

FallR 0.792 topo_wet da 3.9891 0.1581 K0.0201 1.10 0.0038 0.0034

Ma3 0.420 forest_p sedim 0.5001 K0.2302 0.1105 1.36 0.0590 0.0479

Ma41 0.844 precip_t K12.4572 2.3585 1.00 0.0757 0.0762

Ml22 0.602 snow_jun precip_t K19.9335 0.6694 2.0645 1.08 0.2059 0.1987

Mh1 0.823 Da precip_t K27.1792 1.0427 3.3037 1.51 0.1334 0.1345

Mh8 0.886 Da forest_p K1.6245 0.7906 0.6771 1.02 0.1085 0.1021
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predicting several magnitude, frequency, duration,

timing, and rate of change characteristics at ungauged

stream biomonitoring sites. The procedure yielded

several robust models for predicting a suite of

streamflow regime metrics of ecological interest in

ungauged basins across disparate hydroclimatic

regions of CO, WA, and OR. Flow magnitude models

were generally more accurate than models describing

flow variability. Models for certain metrics, particu-

larly in clusters containing multiple ecoregions

separated by large distances (ca. 2000 km), perform

better when geographically independent groups are

further divided to better reflect gross differences in

geologic and climatic factors. Stratification schemes
based specifically on high-, moderate-, and low-flow

aspects of the flow regimes all produce reliable models

but yielded no appreciable improvement in model

performance in this study. This somewhat surprising

result should be tested further, especially in study areas

with less predictable regimes to further explore the

utility of clustering on specific aspects of the flow

regime and the transferability of streamflow data

across regions. The prediction of these ecologically

significant streamflow metrics at ungauged sites

quantifies a ‘master variable’ that profoundly influ-

ences aquatic communities, thereby facilitating

interpretation of biological variation and stratification

of biomonitoring sites for water-quality assessment.
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This research also points to the possibility of

combining readily predicted flow regime metrics and

geomorphic attributes to explore and quantify linkages

between specific aspects of the flow regime and aquatic

community structure. In addition to presenting a

framework for simultaneously modeling a compre-

hensive suite of ecological streamflow metrics, this

research contributes new information and questions for

the Predictions in Ungauged Basins initiative of the

International Association of Hydrological Sciences.
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