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The field of ecoinformatics is concerned with gaining a greater understanding of complex
ecological systems. Many ecoinformatic tools, including artificial neural networks (ANNs),
can shed important insights into the complexities of ecological data through pattern
recognition and prediction; however, we argue that ecological knowledge has been used
in a very limited fashion to shape the manner in which these approaches are applied.
The present study provides a simple example of using ecological theory to better direct
the use of neural networks to address a fundamental question in aquatic ecology—how
are local stream macroinvertebrate communities structured by a hierarchy of
environmental factors operating at multiple spatial scales? Using data for 195 sites in
the western United States, we developed single-scale, multi-scale and hierarchical multi-
scale neural networks relating EPT (Orders: Ephermeroptera, Plecoptera, Trichoptera)
richness to environmental variables quantified at 3 spatial scales: entire watershed,
valley bottom (100s–1000s m), and local stream reach (10s–100s m). Results showed that
models based on multiple spatial scales greatly outperformed single-scale analyses
(R=0.74 vs. R̄=0.51) and that a hierarchical ANN, which accounts for the fact that
valley- and watershed-scale drivers influence local characteristics of the stream reach,
provided greater insight into how environmental factors interact across nested spatial
scales than did the non-hierarchical multi-scale model. Our analysis suggests that
watershed drivers play a greater role in structuring local macroinvertebrate
assemblages via their direct effects on local-scale habitats, whereas they play a much
smaller indirect role through their influence on valley-scale characteristics. For the
hierarchical model, the strongest predictors of EPT richness included descriptors of
climate, land-use and hydrology at the watershed scale, land-use at the valley scale,
and substrate characteristics and riparian cover at the reach scale. In summary, our
results highlight the importance of incorporating environmental hierarchies to better
understand and predict local patterns of macroinvertebrate assemblage structure in
stream ecosystems. More generally, our case study serves to emphasize how
incorporating prior ecological knowledge into ANN model structure can strengthen the
relevance of ecoinformatic techniques for the broader scientific community.
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1. Introduction

Predictive ability is viewed by many as the ultimate confirma-
tion of theory and understanding in ecology (Pielke and Con-
ant, 2003), and it is seen to play an increasing role in the
evolving science of ecological forecasting (Clark et al., 2001).
However, ecosystems are complex, adaptive systems charac-
terized by historical legacies, time lags, non-linearities and
feedback loops that vary in space and through time (see
Levin, 1998), thus making it very challenging for scientists to
explain variation in ecological attributes, let alone model or
predict these attributes with any accuracy or precision (Peters,
1991). With the advent of complexity theory and a growing
recognition of the multi-scaled and hierarchical nature of
ecological systems (Allen and Starr, 1982), ecologists are now
faced with the challenge of constructing more powerful and
flexible models to help address issues of conservation and
resource management.

The emergence of the field of Ecological Informatics or
Ecoinformatics was largely inspired by the need to model com-
plex ecological systems. A number of innovative analytical
techniques have been promoted as powerful alternatives to
traditional approaches for modeling ecological data (see Reck-
nagel, 2003). For example, artificial neural networks (ANNs)
have been embraced by many ecological modelers, as they are
perceived to overcome many of the difficulties associated
with ecological data, namely non-linearity (Lek and Guégan,
2000). Although ANNs technically do not differ from a number
of standard statistical models (e.g., a neural network with no
hidden layer is the same as simple regression and one with a
small number of hidden neurons is analogous to polynomial
regression—see Sarle, 1994), ANNs do provide a much more
flexible approach to modeling ecological data. Model com-
plexity can be varied by altering the transfer function or the
inner architecture of the network by increasing the number of
hidden neurons to enhance data fitting, or by increasing the
number of output neurons to model multiple ecological re-
sponse variables, such as multiple species (e.g. Özesmi and
Özesmi, 1999) or entire communities (e.g. Olden, 2003). It is
this flexibility that has likely led to the increased popularity of
neural networks in ecology.

Like many models in ecology, statistical models should be
crafted after an expert's mental map of how the focal system
operates. Too often, however, this does not occur. In fact, one
could argue that the sophistication of ANNs (and ecoinfor-
matic tools in general) has discouraged the practice of using
sound ecological principles during the modeling process. In-
deed, a brief and selective perusal of the voluminous and
rapidly growing literature using ANNs (for example in the
journal Ecological Modelling) reveals that ecological knowledge
is seldom considered in themodel building process. Flood and
Kartam (1994) emphasized this point when they stated, “there
is a tendency among users to throw a problem blindly at a
neural network in the hope that it will formulate an accept-
able solution”. As a result, the modeling process boils down to
more of a fishing expedition than an educated exploration of
the data. This is somewhat surprising given that domain
knowledge continues to play an important role in other
areas of ecoinformatics, such as the application of genetic
and evolutionary computation approaches. Without doubt,
ANNs can shed important insights into the complexities of
ecological data through pattern recognition; however, their
potential to incorporate prior ecological knowledge and ad-
dress specific ecological theory has, in general, failed to be
exploited. Incorporating prior ecological knowledge into
model structure would, we believe, make the relevance of
these techniques more obvious and attractive for the
broader scientific community.

In this paper, we argue that ecoinformatic practitioners
must begin to more rigorously incorporate existing knowl-
edge into more ecologically informed statistical models. An
obvious question then arises: How can ecological knowledge
advance our use of neural networks in ecological modeling? Here,
we present a case study that provides one example of how to
address this question. Specifically, using the principles of
spatial hierarchy we explore how a series of nested, hierar-
chical neural networks can be used to model stream macro-
invertebrate assemblages as a function of environmental
variables describing three nested spatial scales. Our intent
is to illustrate that ecological principles have a vital role to
play in improving the performance and interpretability of
ANNs, and subsequently in advancing their use for addres-
sing ecological theory and testing specific, conservation-rel-
evant hypotheses.
2. Case study—modeling stream
macroinvertebrate assemblages using a
hierarchical neural network

Understanding and predicting the distribution and abundance
of species across the landscape is a fundamental research
goal, and one certainly having important applications in riv-
erine ecosystems. In the United States, and other developed
countries, compliance with water quality standards is often
judged with biological data, i.e., indicator species sensitive to
water quality degradation. Explaining variation in the distri-
bution of sensitive taxa in relation to environmental condi-
tions at sampling sites is a key focus of many biomonitoring
programs (e.g. Wright et al., 2000), and our ability to develop
predictive models to explain biological condition in terms of
landscape variables will directly inform stream conservation
and resource management activities. Often aquatic insects,
the immature stages of which live in close association with
the stream bed (i.e. benthic), are used as indicators of water
quality, and we focus on this group in the example below.

Our scientific understanding of how flowing water ecosys-
tems are structured and how they function draws on several
important advances over the last 20 years from general eco-
logical theory that have been transferred or translated to the
riverine environment (cf. Harris, 1998). Since the publication
of Frissell et al. (1986), stream ecologists recognize that stream
systems have a physical habitat hierarchy, i.e., local habitat
conditions are influenced by landscape processes operating at
broader spatial and temporal scales. For example, the stream-
bed substrate characteristics at a point in the stream are
dictated by the erosional forces operating at the reach scale
and the sediment supply and type contributed by the entire
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upstream catchment (as a function of geology, land cover, and
precipitation regime). Thus, to characterize ‘habitat’ requires
measurements at multiple scales and the incorporation of the
hierarchical constraints imposed by the characteristics oper-
ating at broader scales (Townsend, 1996; Allan and Johnson,
1997).

A second major principle in stream ecology is that the
spatial structure and temporal dynamics of ‘habitat’ strongly
influence the distribution and abundance of aquatic species,
including benthic insects. This so-called ‘habitat template’
provides a powerful framework for understanding among-
site variation in benthic community composition in terms of
environmental characteristics (Poff and Ward, 1990; Town-
send and Hildrew, 1994). Because habitat is multi-scaled and
hierarchical, it follows that biological responses to habitat can
themselves be influenced by processes operating at multiple
scales. Accordingly, local benthic community composition is
dictated by spatial variation in habitat ‘filters’ operating at
multiple landscape scales (see Poff, 1997). By characterizing
how these filters change across the landscape, we can expect
to explain substantial variation in benthic composition and
move toward building more precise predictive models of use
in conservation ecology and aquatic resource management
(Petts, 2000).

In the case study that follows we apply ANN to a large
biological dataset for streams in the western United States to
explain variation in the composition of sensitive benthic taxa
across these sites. We had three overarching goals: (1) build
an ANN that captures our ecological understanding of the
Fig. 1 –Map of the study area and sample sites (n=195) in the Pa
United States. These sites are spatially distributed across 9 leve
Plateau (n=5), Columbia Plateau (n=9), Williamette Valley (n=4
(n=16), Eastern Cascades Slopes and Foothills (n=10) and North
richness, i.e., larger symbols represent larger EPT richness.
hierarchical structure of aquatic habitats by developing en-
vironmental descriptors that could serve as ‘filters’ at multi-
ple spatial and temporal scales, from the local site to the
entire catchment; (2) determine what new insights are
gained from taking an integrative approach across multiple
scales with a hierarchical vs. unstructured ANN (i.e. multi-
scale but not hierarchical); (3) explore some implications of
the case study results for broader conservation ecology and
resource management of streams. Specifically, we con-
structed an ANN to investigate the influence of watershed-,
valley-, and reach-scale environmental factors on local rich-
ness (number of species) of stream benthic insects. We
focused on the well-known taxa groups EPT (Orders: Epher-
meroptera, Plecoptera, Trichoptera), because abundance of
these species is indicative of unimpaired water quality
(Rosenberg and Resh, 1993).
3. Methods

Our analysis examined 195 sites located in the Pacific North-
west and Southern Rocky Mountain regions of the western
United States (Fig. 1). Macroinvertebrate communities were
sampled between the years 1994 to 2001 as part of the U.S.
Environmental Protection Regional Environmental Monitoring
and Assessment Program (REMAP), which aims to assess the
overall ecological condition of streams throughout the coun-
try (Kaufmann et al., 1999). The study sites (generally 1st
through 4th order wadeable streams) were randomly selected
cific Northwest and Southern Rocky Mountain regions of the
l-III ecoregions, including Southern Rockies (n=53), Colorado
), Coast Range (n=86), Klamath Mountains (n=4), Cascades
Cascades (n=8). Symbol sizes are proportional to EPT taxa
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according to a spatially balanced design, and were sampled
using standardized protocols. Composite samples from
stream reaches were used to characterize the macroinverte-
brate assemblage at each site (see Kaufmann et al., 1999 for
collection details), and the proportion of EPT taxa was calcu-
lated by dividing EPT taxa richness by total taxa richness
(hereafter referred to as EPT richness). A total of 140 taxa
were identified (mostly to genus level, except Chironomidae
which were identified to tribe) and richness (total number of
taxa recorded) per site ranged between 3 and 53 (X̄=34,
SD=11.3).

We quantified 33 environmental variables describing hab-
itat conditions at the watershed (n=15), valley (n=7) and reach
scales (n=11) (Table 1). Data from the U.S. Environmental
Protection Agency's (EPA) Western Environmental Monitoring
and Assessment Program (EMAP) and REMAP were used to
describe reach-scale characteristics. The R/EMAP metrics are
based on field measurements and observations of channel
geometry, riparian characteristics, bed material, and woody
debris at a length scale of tens of meters. Valley- and water-
shed-scale metrics were computed from remotely sensed data
Table 1 – Description of the 33 environmental variables used to

Scale Category Code

Watershed Hydrology WH_Base
WH_DLoP
WH_MA
WH_NoFl

Climate WC_Aspt
WC_AugT
WC_WinT

Geology WGy_Sedi
WGy_Volv
WGy_Buff

Geomorphic WG_MSSP
WG_Slop

Land use WL_Barr
WL_Fore
WL_Agri

Valley Geomorphic VG_DWSP
VG_Powe
VG_Entr
VG_Conn

Land use VL_Barr
VL_Fore
VL_Agri
WL_Agri

Reach Geomorphic RG_Slop
RG_Sinu
RG_WiDp
RG_RelR

Riparian RR_Cano
RR_Dist
RR_CDen

Substrate RS_D84
RS_SnFi
RS_LWDV
RS_BedS
WL_Agri

First two letters of the variable code refer to spatial-scale (W=watershed,
Gy=geology, G=geomorphic, L=land-use, R=riparian, S=substrate), resp
using a Geographic Information System. Spatial data were
taken from several sources, including the U.S. Geological Sur-
vey, U.S. EPA, U.S. Department of Agriculture Natural
Resources Conservation Service (NRCS), and PRISM developed
by the Oregon Climate Service. Valley-scale metrics were de-
veloped to characterize landscape conditions upstream from
the sampling site to the first major tributary to the main
stream. Thus, they have a length scale on the order of 100s
to 1000s of meters. Watershed-scale metrics apply to the
entire drainage area or channel network above the sampling
site and thus typically have a length scale N1000s of meters.
The data used include 10-m digital elevation models (DEMs),
soils, geology, land cover, and climate, which were charac-
terized using models developed in Arc Macro Language and
C++. Computed geomorphic metrics included slope and spe-
cific stream power (SA0.4; where S=reach slope, A=water-
shed area, and 0.4 is a power function coefficient) using
hydrologic distance-weighting schemes based on flow dis-
tance from the watershed outlet (study site), and valley con-
finement and hillslope connectedness to assess floodplain
connectivity and the potential for colluvial inputs. Additional
model EPT richness

Description

7-day minimum flow/mean annual flow
Average duration of low pulses (day)
Specific mean annual runoff (m3/km2)
Mean number of discrete flood events (year−1)
Aspect (degrees)
August temperature (°C)
Five-month (Nov–Mar) winter temperature (°C)
Sedimentary geologic type (%)
Volcanic geologic type (%)
Calcareous rock (%)
Mean specific stream power (km)
Watershed slope (m/m)
Barren (%)
Forested (%)
Agricultural (%)

Distance weighted stream power (km2)
Last link specific stream power (S*A0.4; km0.8)
Valley entrenchment (m)
Average hillslope connectivity (m)
Barren (%)
Forested (%)
Agricultural (%)
Agricultural (%)

Channel slope (%)
Channel sinuosity (m/m)
Mean bankfull width/depth ratio (m/m)
Relative roughness—D84/R
Riparian canopy present (proportion of reach)
Proportion of riparian zone disturbed by human land uses
Riparian canopy density (%)
Substrate (mm)
Sand and fines particles (%)
Volume of large woody debris in bankfull channel (m3/m2)
Substrate mobility (=Slope*(A/D84)0.4) (km0.4)
Agricultural (%)

V=valley, R=reach) and variable-category (H=hydrology, C=climate,
ectively.
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metrics included physiographic, climatic, riparian distur-
bance, geological and hydrologic regime characteristics
(Table 1).

We used a feed-forward neural network trained by the
back-propagation training algorithm (Rumelhart et al., 1986)
to model EPT richness as a function of the 33 environmental
variables. The neural network architecture included an input
layer containing a neuron for each environmental variable, a
single hidden layer and one output neuron representing the
predicted number of EPT taxa at a site. The optimal number
of neurons in the hidden layer (optimal referring to mini-
mizing the trade-off between network bias and variance)
was determined empirically by comparing the performances
of different cross-validated networks, with 1–30 hidden neu-
rons, and choosing the number that produced the greatest
predictive performance. Learning rate (η) and momentum (α)
parameters (both varying as a function of network error)
were included during network training to ensure a high
probability of global network convergence and a maximum
of 1000 iterations for the back-propagation algorithm to de-
termine the optimal axon weights. Prior to training the net-
work, the environmental variables were converted to z-
scores to standardize the measurement scales of the inputs
into the network. We refer the reader to Bishop (1995) and
Olden and Jackson (2001) for more details regarding the ANN
methodology.

The contribution of each independent variable to the pre-
dictive output of the neural network depends primarily on the
magnitude and direction of the inter-neuron connection
weights. We calculated the relative importance of the envi-
ronmental variables in the neural network by quantifying the
product of the input-hidden and hidden-output connection
weights between each input neuron and output neuron and
then summed the products across all hidden neurons. Rela-
tive importance (expressed as a percentage) was calculated by
dividing the absolute value of each variable contribution by
the grand mean (sum of all absolute variable contributions).
The relative contributions of each variable were subsequently
assessed for their statistical significance with a randomiza-
tion test, which randomizes the response variable and then
constructs a neural network based on the randomized data
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Fig. 2 –Schematic of the neural networks used to model
and records the relative explanatory importance of each en-
vironmental variable. This process is repeated 9999 times to
generate a null distribution for the relative importance of each
variable, which is then compared with the observed values to
calculate the significance level (see Olden and Jackson, 2002).
The connection weight approach described above has been
shown to be an unbiased estimator of variable contributions
in neural networks (Olden et al., 2004). All neural network
analyses were conducted using computer macros written in
the MatLab® programming language (The MathWorks, Natick,
Massachusetts, USA).

A series of neural networks were constructed to examine
the relationship between EPT richness and single- and multi-
scale descriptors of the environment. First, we developed sin-
gle-scale models with the following numbers of input, hidden
(optimized as discussed above) and output neurons that are
reported in parentheses: watershed-scale (15-8-1), valley-
scale (7-4-1) and reach-scale (11-5-1). Second, we developed
a multi-scale model using environmental variables from all
three scales (33-12-1). Third, we developed a hierarchical
model using the following steps: (a) reach-scale variables
were modeled as a function of valley- and watershed-scale
variables using a multi-response ANN (22-9-11); (b) valley-
scale variables were modeled as a function of watershed-
scale variables using a multi-response ANN (15-8-7); (c) EPT
richness was modeled as a function of the residuals from the
models described in (a) and (b) plus the watershed-scale vari-
ables (33-12-1) (see Fig. 2). By using the residuals we account
for the fact that valley- and watershed-scale drivers influence
local characteristics of the stream reach, and we remove this
influence in quantifying the unique effect of local-scale vari-
ables on macroinvertebrate assemblages. Therefore, variables
at the watershed and valley scale can potentially have both a
direct and indirect relationship with EPT richness. We used
the same number of hidden neurons and same initial random
connection weights when constructing the multi-scale and
hierarchical ANNs so that the results would be directly com-
parable (i.e. model differences not related to differences in
initial model weights). Models were validated using n-fold
cross validation, and predictive performance was assessed
using Pearson's product–moment correlation coefficient
EPT
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Table 2 – Relative importance (%) of environmental
variables in neural networks based on single scales
of watershed, valley, and reach; at all scales; and
hierarchical organization of all scales

Variable Watershed
scale

Valley
scale

Reach
scale

All
scales

Hierarchical

WH_Base 6.3 (+) 6.8 (+) 4.2 (+)
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between predicted and actual EPT values (expressed as the
coefficient of determination), and the root-mean-square-of-
error (RMSE) of the predicted values. The Pearson's correlation
provides a measure of model accuracy, with better models
being represented by correlation coefficients approaching 1;
RMSE measures model precision, with smaller values repre-
senting higher precision.
WH_DLoP 6.0 (−) 2.9 (−) 4.0 (−)
WH_MA 0.7 (−) 1.7 (−) 0.5 (−)
WH_NoFl 4.0 (+) 1.9 (+) 2.7 (+)
WC_Aspt 2.1 (−) 0.5 (−) 1.4 (−)
WC_AugT 18.7 (−) 6.4 (−) 12.6 (−)
WC_WinT 25.7 (+) 12.4 (+) 17.2 (+)
WGy_Sedi 1.7 (−) 0.8 (+) 1.2 (−)
WGy_Volv 5.1 (+) 5.0 (+) 3.4 (+)
WGy_Buff 1.4 (−) 0.7 (−) 0.9 (−)
WG_MSSP 0.3 (+) 0.2 (+) 0.2 (+)
WG_Slop 3.9 (−) 4.7 (−) 2.6 (−)
WL_Barr 3.5 (+) 0.5 (+) 2.4 (+)
WL_Fore 12.9 (+) 4.9 (+) 8.7 (+)
WL_Agri 7.6 (−) 6.3 (−) 5.1 (−)

VG_DWSP 0.5 (+) 0.2 (+) 0.4 (+)
VG_Powe 8.9 (+) 2.0 (+) 2.7 (+)
VG_Entr 10.9 (+) 1.9 (−) 1.4 (−)
VG_Conn 29.1 (−) 0.2 (+) 0.8 (+)
VL_Barr 14.0 (+) 0.4 (+) 0.5 (+)
VL_Fore 30.4 (+) 3.3 (+) 3.2 (+)
VL_Agri 6.2 (−) 2.2 (+) 0.8 (+)

RG_Slop 2.0 (+) 0.7 (−) 0.6 (−)
RG_Sinu 1.6 (−) 0.1 (+) 0.1 (+)
RG_WiDp 12.2 (+) 2.1 (+) 1.6 (+)
RG_RelR 0.2 (−) 1.4 (+) 1.1 (+)
RR_Cano 9.3 (+) 4.7 (+) 3.0 (+)
RR_Dist 9.3 (+) 3.1 (+) 2.6 (+)
RR_CDen 19.9 (+) 2.6 (+) 1.8 (+)
RS_D84 4.9 (−) 4.6 (−) 2.8 (−)
RS_SnFi 15.4 (−) 7.1 (−) 4.3 (−)
RS_LWDV 11.7 (+) 5.5 (+) 4.1 (+)
RS_BedS 13.4 (−) 2.3 (−) 1.2 (−)

Positive and negative contributions are represented by (+) and (−),
4. Results

EPT richness at a site was variable across the study region,
ranging between 0 and 100% (X̄̄̄=62%), with some evidence for
differences among 3rd-order Ecoregions (Fig. 1). Sites with
lowest EPT richness were in the Colorado Plateau (X̄̄̄=36%)
and Williamette Valley (X̄̄̄=39%), whereas highest observed
richness was in the Eastern Cascades (X̄̄̄=82%), North Cas-
cades (X̄̄̄=78%) and Cascades (X̄̄̄=76%).

Single- and multi-scale ANNs illustrated differing abili-
ties for predicting EPT richness (Fig. 3). Although all models
were statistically significant based on n-fold cross valida-
tion (Pb0.01), comparisons of single-scale models showed
that watershed descriptors were the most predictive of EPT
richness (R2=0.64, RMSE=0.13), followed by reach descrip-
tors (R2=0.58, RMSE=0.14) and valley descriptors (R2=0.32,
RMSE=0.17). At the watershed scale, environmental variables
statistically associated with greater EPT richness were warm-
er winter and cooler summer air temperatures, greater pro-
portion of forested watersheds, higher stream baseflows, and
shorter durations of low flow events (Table 2). At the valley
scale, greater proportion of forested valleys and higher hill-
slope connectivity were strongly related to elevated EPT rich-
ness. At the reach scale, correlates of EPT richness were
greater riparian density, greater width-to-depth ratio, high
volume of large-woody debris, low substrate mobility, and
low proportions of sand/fine substrates.

When combining environmental variables from all three
spatial scales, ANNs were found to better predict EPT richness
respectively, and bold, underlined values are statistically signifi-
cant based on αb0.05. Variable codes are described in Table 1.
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Fig. 3 –Comparison of ANN performances based on different
spatially scaled environmental variables.
(R2=0.74, RMSE=0.12) compared to single-scale models (Fig. 3).
Importantly, comparisons of adjusted R-values indicate that
these differences are not attributed to greater predictive per-
formance associated with greater number of independent
variables included in the analysis (results not shown). We
point out that the predictive performances of both the non-
hierarchical multi-scale ANN and the hierarchical ANN are
equivalent, because both approaches explain the same total
explained variation in EPT richness. However, they partition
this variation among the spatial scales in a different manner
by removing redundancy among variables in a structured,
nested manner.

Both multi-scale models identified the primary impor-
tance of environmental characteristics described at the wa-
tershed scale for predicting EPT richness, followed by the
contributions of reach-scale and then valley-scale environ-
mental variables. Comparison of the two models shows that
a substantial proportion of variation in EPT richness
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explained by reach-scale environmental drivers can be at-
tributed to the indirect influence of valley- and watershed-
scale variables. Specifically, because the hierarchical model
respects the fact that valley- and watershed-scale drivers
influence local characteristics of the stream reach, only the
unique variation (i.e., non-redundant) at the local scale is
available to explain residual variation in the hierarchical
model, thereby leading to a reduced contribution of local
variables and an increased contribution by the watershed
variables. Because the relative contributions of valley-scale
variables remained unchanged between the two models, it
can be inferred that valley drivers are acting more indepen-
dently in their predictions of EPT richness. The hierarchical
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Fig. 5 –Residuals from the hierarchical ANN indicating that predi
values indicate cases where EPT richness was under-predicted (i.
cases where EPT richness was over-predicted. Symbol represent
model illustrated the positive influence of winter air tem-
peratures, proportion of watershed and valley that is forest-
ed, stream baseflows, stream power and volume of large-
woody debris, and the negative influence of summer air
temperatures, proportion of watershed that is agricultural
land, duration of low flow events and proportions of sand/
fine substrates, on predicted levels of EPT richness (Table 2).
In general, the strongest predictors of EPT richness included
watershed descriptors of climate, land-use and hydrology,
and reach descriptors of substrate size and riparian cover
(Fig. 4). Our results also illustrate that although some envi-
ronmental variables may be significant predictors of EPT
richness when only single scales are considered, they are
not necessarily important when multiple scales are consid-
ered, reflecting the inter-correlation of variables across
scales.

We found significant differences in the mean model resi-
duals among the ecoregions (ANOVA: F8,186=2.81, P=0.006; Fig.
5). Model residuals from the hierarchical ANN were signifi-
cantly greater than zero for sites in the Cascades (t15=3.60,
P=0.003) and North Cascades (t7=2.89, P=0.023) and moder-
ately greater for the Eastern Cascades (t9=1.81, P=0.104), indi-
cating that EPT richness was under-estimated in these regions
compared to expectations based on environmental conditions
across all regions. In contrast, EPT richness tended to be over-
estimated for sites in the Colorado and Columbia Plateaus,
although these were not statistically significant.
5. Discussion

Aquatic invertebrates exhibit great variation in distribution
and abundance across riverine landscapes (Malmqvist, 2002).
Although local stream processes were traditionally argued to
be the ultimate drivers of local macroinvertebrate diversity
(Vinson and Hawkins, 1998), numerous studies have estab-
lished the utility of considering multi-scale processes in
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determining local assemblage structure (e.g., Wohl et al., 1995;
Carter et al., 1996; Hawkins et al., 2000; Brosse et al., 2003;
Lamouroux et al., 2004; Sandin and Johnson, 2004). Our results
strongly support the use of multiple scales and further dem-
onstrate that by structuring these scales hierarchically
according to stream landscape principles (Frissell et al., 1986;
Townsend, 1996), we can begin to distinguish the unique con-
tributions of processes or variable contributions at different
scales in the landscape hierarchy.

Ecological interpretation of our hierarchical ANN provides
important insight into the factors shaping local macroinverte-
brate diversity. At the watershed scale, climate was the most
important variable overall. Greater EPT richness was associat-
ed with reduced extreme seasonal temperatures, e.g., warmer
winter temperatures and cooler summer temperatures. This
finding agrees with the fact that our study area encompasses
a broad geographic and climatic gradient, ranging from high
elevation, harsh conditions to lowland or plateau streams
that may warm up significantly in summer (especially where
riparian shading is lacking). Another important driver of EPT
richness was the relative amount of forest vs. agricultural
lands, where greater diversity was associated with more for-
ested watersheds. Conversion of forest to agriculture at the
watershed scale has frequently been shown to reduce sensi-
tive insect species, including EPT (see Allan, 2004). Interest-
ingly, a pair of hydrologic variables was important in
explaining variation in EPT across the study sites. We found
EPT richness to increase with higher baseflows and to decline
with increased duration of low flow spells. Hydrologic regime
is recognized as an important driver of ecological organization
in streams (Poff et al., 1997) yet it is rarely included in broad-
scale analyses of landscape controls on local community
structure. A few papers have directly included flow (e.g. Poff
and Allan, 1995 for fish), but typically some surrogate of flow
is used (e.g., Richards et al., 1996; Townsend et al., 1997). Our
study thus is among the first to demonstrate the direct im-
portance of hydrologic conditions at the watershed scale
across a broad geographic extent.

At the valley scale, EPT richness increased with stream
power across the sites, suggesting that sites with greater
flow energy may have coarser substrates, better riffle devel-
opment and greater water aeration, and/or reduced fine sedi-
ments, which promote the existence of sensitive taxa (Zweig
and Rabeni, 2001). We also found that EPT richness increased
with percentage forest cover at the valley scale. This is not
surprising; however, it is important to note that this is a
unique contribution to the model, one not captured by the
watershed-scale forest cover. Further, inclusion of valley-
scale riparian cover as a variable (in conjunction with water-
shed forest cover) appears to remove the need to include a
local-scale measure of riparian cover (see Table 2), suggesting
a fair amount of redundancy in the predictive ability among
riparian variables measured at small to intermediate scales.
Several studies have shown that more intermediate-scale
measures of riparian cover are good explanatory variables
for reach-scale biotic condition in streams (e.g., Karr and
Chu, 1999; Thompson and Townsend, 2004).

At the reach scale, we found substrate and large woody
debris to have unique contributions to predicting EPT richness
across our study sites. Our finding that increased fine sedi-
ments reduce richness is not surprising, as fine sediment
deposition is widely recognized as a key indicator of habitat
degradation (Waters, 1995; Allan, 2004). Interestingly, the im-
portance of this local geomorphic variable was much reduced
in the hierarchical model relative to the model that only in-
cluded local variables (see Table 2). This observation indicates
that there is local-scale control on fine sediment deposition
that cannot be explained or predicted by larger-scale descrip-
tors, which has important implications for conservation and
biomonitoring (see below). We also found that large woody
debris enhances EPT richness at sites. The presence of LWD
promotes habitat stability in the stream and is often indica-
tive of a more intact riparian zone and the associated positive
benefits (Montgomery, 1997; Karr and Chu, 1999).

Our paper is one of a surprisingly small (but growing) num-
ber of studies using a hierarchical approach to distinguish
among unique contributions of environmental drivers operat-
ing at multiple scales. Our paper both complements this body
of literature and extends it in terms of model structure and
geographic extent. For example, Brosse et al. (2003) studied 97
sites within the 5704 km2 Taieri River catchment in New Zeal-
and, and found variation in benthic invertebrate diversity to
be best explained by variables quantified at the local scale
(bedform), then reach scale, and finally catchment scale. By
contrast, we found watershed-scale (i.e., catchment) variables
to be more important than local-scale variables, which in turn
weremore important than valley-scale variables. Other recent
studies conducted at broad spatial scales support the finding
that large-scale variables are more important than local vari-
ables in explaining macroinvertebrate composition (e.g.,
Townsend et al., 2003; Bonada et al., 2005; but see Sandin
and Johnson, 2004). The lack of consensus regarding the rela-
tive importance of local- vs. regional-scale variables in con-
trolling stream benthic communities likely reflect a number of
differences in study design, including spatial scale and mod-
eling approach.

Our study encompassed a very broad geographic extent
(Fig. 1), across which there is tremendous variation in climat-
ic, geologic and land cover conditions. As a result, our study
had amuch greater gradient of possible watershed-scale char-
acteristics compared to the single catchment modeled by
Brosse et al. (2003). As geographic extent shrinks we would
also expect reductions in the variation explained by large
scale geographic differences in landscape setting, resulting
in the likelihood that local-scale variables should naturally
explain more variation at the reduced geographic scales. For
example, in a series of studies of the effects of land use on
water quality in Michigan, USA, Roth et al. (1996) observed
that watershed-scale variables (forest cover) were more im-
portant than local scale variables (riparian cover) across a
diversity of watershed types across a forested-agricultural
gradient, whereas Lammert and Allan (1999) demonstrated
that when only agricultural watersheds were examined,
local riparian cover was a key explanatory variable. These
examples illustrate both the importance of geographic extent
and the associated length of the environmental gradient being
sampled (Weigel et al., 2003), as well as suggesting the need to
account for environmental hierarchies during modeling. This
is supported by Sandin and Johnson (2004) who found that
interactions among local, landscape and regional factors were
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important in structuring benthic macroinvertebrate assem-
blages in Swedish streams.

Our study has interesting implications for aquatic resource
conservation and stream biomonitoring in the western United
States and other regions. First, one particular strength of our
hierarchical model is that we can better identify the unique
contributions of variables measured at different spatial scales
for explaining and predicting variation in local macroinverte-
brate assemblages. With the increased development of Geo-
graphic Information Systems for landscape analyses, there is
a strong desire to ‘map’ aquatic habitat using only remotely
sensed data in the hope of foregoing (or at least minimizing)
the expense of collecting local site data. Our analysis indicates
this may be feasible to an extent, but local information cannot
be ignored. Specifically, our reach-scale variables of fine sed-
iment and large woody debris remained as significant predic-
tors in our model (although their importance decreased), even
after accounting for the variation explained by watershed and
valley-scale descriptors. This suggests that important habitat
descriptors at the local scale cannot yet be entirely captured
by larger-scale GIS-derived variables describing forest and
riparian cover, lithology and potential erosibility of watershed
bedrock, and sediment transport capacity and storage in
stream channels as a function of channel slope from digital
elevation models. In this sense, our model identifies critical
research directions that GIS modeling might take in gaining
more robust estimates of local scale variables that currently
can only be measured in the field. It also confirms that vari-
ables operating at all hierarchical levels are, in fact, important
(Allan et al., 1997).

In a conservation context, our findings suggest that a hier-
archical approach may facilitate the identification of land-
scape conservation units and help advance the science of
biomonitoring. Multi-scale modeling approaches that respect
the hierarchy in which environmental drivers operate can
help identify the critical habitat variables needed to be char-
acterized at local scale and thus guide the more efficient
collection of field data in the future. Moreover, our results
suggest that valley-scale descriptors of the environment are
important, in that they explained variation in macroinverte-
bate diversity independent of that explained by the watershed
scale. This intermediate scale of characterization is almost
always missing in biomonitoring (e.g., Hawkins et al., 2000),
and may help explain the typically poor generality of RIV-
PACS-type models. We argue that future research in the field
of bioassessment should respect the spatial hierarchy of
aquatic ecosystems by exploring the manner in local assem-
blages are formed from the differential “filtering” of species
from the regional pool. Species traits may provide a powerful
currency for such analyses (Poff, 1997); as was illustrated re-
cently by Chessman and Royal (2004).
6. Conclusion

The field of ecoinformatics aims to make sense of complex
ecological data, yet we argue it has not fully realized its po-
tential to better guide the application of its modeling tools,
including the use of artificial neural networks. As Maier and
Dandy (2000) accurately observed, “at present, there is a ten-
dency among researchers to apply ANNs to problems for
which othermethods have been unsuccessful,” and as a result
the ecological literature has witnessed the repeated applica-
tion of ANNs to an ever-increasing number of case studies.
Advancing the field of ecoinformatics requires practitioners to
challenge themselves to better incorporate their current eco-
logical knowledge during the model building process, so that
model results can be used to generate new questions that are
recognized as ecologically insightful. Our study provides a
simple example of using ecological theory to better direct
the use of neural networks to address a fundamental question
in aquatic ecology—how are local stream macroinvertebrate
communities structured by a spatial hierarchy of environ-
mental factors? Developing more ecologically relevant ANNs,
in our view, is a necessary first step in better utilizing the
statistical tools that ecoinformatics provide to ecology.
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