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Channel-reach morphology dependence on energy, scale, and
hydroclimatic processes with implications for prediction using
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[1] Channel types found in mountain drainages occupy characteristic but intergrading
ranges of bed slope that reflect a dynamic balance between erosive energy and channel
boundary resistance. Using a classification and regression tree (CART) modeling
approach, we demonstrate that drainage area scaling of channel slopes provides better
discrimination of these forms than slope alone among supply- and capacity-limited sites.
Analysis of 270 stream reaches in the western United States exhibiting four common
mountain channel types reveals that these types exist within relatively discrete ranges of
an index of specific stream power. We also demonstrate associations among regional
interannual precipitation variability, discharge distribution skewness, and means of the
specific stream power index of step-pool channels. Finally, we discuss a conceptual
methodology for predicting ecologically relevant morphologic units from digital elevation
models at the network scale based on the finding that channel types do not exhibit equal

energy dissipation.
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1. Introduction

[2] Aquatic ecology is undergoing a shift from the con-
ventional paradigm of continuous one-dimensional down-
stream change to a more dynamic and discontinuous view of
aquatic systems that encompasses complex interactions
between channel networks and the landscape [Fisher et al.,
2001; Fausch et al., 2002; Wiens, 2002; Benda et al., 2004].
This evolving paradigm in aquatic science has also brought
to the forefront the need to link ecologically relevant aquatic
habitat units with their formative processes acting at multiple
spatial and temporal scales in fluvial systems. At the
channel-reach scale, water discharge volume and timing
are set by climatic forcing and upstream watershed (hill-
slopes and valley-channel network) geometry and material
characteristics. Erosion and transport of hillslope and up-
stream channel-bed material, together with water discharge
characteristics, determine the sediment flux into a channel
reach. The resulting water and sediment regimes act within a
particular geologic and historical setting, along with recruit-
ment and retention of woody debris, to influence the local
habitat template over which aquatic community structure is
imposed [Southwood, 1977; Poff, 1997; Montgomery et al.,
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1999]. Field studies frequently focus on the channel-reach
scale largely because variables of interest within a reach
several channel widths in length remain relatively homoge-
neous [Grant et al., 1990; Montgomery and Buffington,
1997]. The channel reach is therefore an important scale of
focus when considering how processes at multiple spatial
and temporal scales drive geomorphic form and structure
physical habitat.

[3] Most existing fluvial classifications are intended to
relate measurable reach-scale elements of channel form
such as channel bed slope, bankfull dimensions, bed forms,
and substrate size to stream processes and functions. Chan-
nel bed slope, in particular, is consistently used in fluvial
classifications as indicative of local flow energy dissipation
[e.g., Rosgen, 1994; Montgomery and Buffington, 1997].
Reach-scale channel bed morphology arises as a function of
local shear stress and specific stream power, which are
determined by both channel slope and unit discharge. The
flow regime (and thus unit discharges) imposed locally
depends on, among other variables, climatic forcing and
network position (scale). Fluvial classifications have been
criticized for not incorporating scale [e.g., Juracek and
Fitzpatrick, 2003], although scale-dependence of some
channel-reach characteristics has been well established, for
example, by work on downstream hydraulic geometry [e.g.,
Leopold and Maddock, 1953], punctuated downstream
fining [e.g., Rice, 1998; Rice, 1999], and vegetative control
of channel width [4Anderson et al., 2004].

[4] Montgomery and Buffington [1998] provide a de-
scription of key processes operating at various spatiotem-
poral scales that could be used to stratify channel networks
and argue that knowledge of how these processes affect the
spatial distribution of channel classes aids in predicting
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Table 1. Summary of the Data Sets Used in This Meta-Analysis, With the State, Region, and Number of

Reaches Surveyed for Each Data Set Indicated

Source State Region Number of Reaches
This study Colorado Front Range 12
Chin [1989] California Santa Monica 14
Curran [1999] Washington Cascades 20
MacFarlane and Wohl [2003] Washington Cascades 20
Madsen [1995] Montana Northern Rockies 88
Montgomery and Buffington [1997] Washington Cascades 34
Southerland [2003] Washington Cascades 57
Wohl et al. [2004] Colorado Front Range 25

Total

channel response to disturbance. At the coarsest spatiotem-
poral scales, for instance, they suggest stratification along
geomorphic provinces that are bound spatially by signifi-
cant physiographic, climatic, and geological features to
minimize variability in relationships among drainage area,
discharge, sediment supply, and substrate size. However,
fluvial classifications rarely include quantifiable metrics of
climatic and hydrologic (hydroclimatic) influence [Poff et
al., 2006], particularly related to long-term characteristics of
discharge timing, duration, and frequency, and associated
climatic forcing, to aid in identification of such provinces.
In part, the fact that classifications are rarely informed by
hydroclimatology arises from competition between the need
to assess channel types and aquatic habitats over large
regions (e.g., ecoregions) and the relative sparseness of
discharge data over these scales. Invoking drainage area
as a surrogate for channel-forming discharge is a common
way to compromise between these competing factors and
introduces an element of scale into classification. However,
doing so is predicated on homogeneity in the relationship
between discharge and drainage area (and implicitly in
climatic forcing) over the region of interest. Thus, over
large regions the assumption of interchangeability between
drainage area and discharge can be confounded by gradients
in hydroclimatic behavior.

[5] In the present study we examine the hypothesis that
mountain channel-reach types occupy distinct ranges of
specific stream power. This hypothesis is a logical integra-
tion of previous studies which reported that (1) combining
substrate size with drainage area significantly improves
models predicting bed slope as a function of drainage area
only [Hack, 1957], and (2) mountain channel types occupy
fairly distinct ranges of both substrate size and bed slope
[Grant et al., 1990; Montgomery and Buffington, 1997,
Wohl and Merritt, 2005]. Because our data set consists of
ungaged sites from several regions of the western United
States spanning a hydroclimatic gradient, we used an index
of specific stream power based on contributing area and
local channel slope. We specifically examine whether chan-
nel types [after Montgomery and Buffington, 1997] occupy
characteristic ranges of the drainage area—dependent index
of specific stream power and in doing so, exhibit scale
dependence. To assess the adverse impact of using drainage
area as a surrogate for discharge characteristics on our
ability to discern different channel types, we investigate
whether variability in the index of specific stream power of
step-pool channels is related to regional discharge and
climate variables. Finally, we comment on potential impli-
cations in the fields of geomorphology and aquatic ecology,

especially regarding the development and use of fluvial
classification systems, and discuss future research possibil-
ities that may facilitate an ability to predict attributes of
channel-reach morphology using digital geospatial data.

2. Methodology

[6] We compiled a database of 270 alluvial stream
reaches from the Washington Cascades [Montgomery and
Buffington, 1997; Curran, 1999; MacFarlane and Wohl,
2003], the Northern Cascades [Southerland, 2003], the
northern Rocky Mountains of Montana [Madsen, 1995],
the Colorado Front Range [this study; Wohl et al., 2004],
and the Santa Monica Range of California [Chin, 1989]
(Table 1). The channel reaches in the database have obser-
vations of the following variables of interest: (1) channel-
reach type comparable to Montgomery and Buffington
[1997], (2) reach-scale bed slope measured with field survey
equipment, and (3) drainage area upstream of the channel
reach. Of these channel reaches, 15 were classified as
cascade, 135 were classified as step-pool, 15 were classified
as plane-bed, and 115 were classified as pool-riffle. Bed
material at all sites is gravel or larger. Watershed areas were
digitized or measured with a digital planimeter from 7.5-min
topographic quadrangle maps in all studies except that of
Chin [1989], which did not report how watershed areas were
determined.

[7] The process-based channel classification of
Montgomery and Buffington [1997] is used because (1) the
channel types they delineate are collections of spatially
connected channel units that are widely known in fluvial
geomorphology, and (2) Montgomery and Buffington [1997]
hypothesize that the roughness configurations or energy-
dissipating features that distinguish these channel types
reflect downstream changes in sediment supply relative to
capacity. Large woody debris (LWD) was present at some of
the sites used in this study, but no sites with bed morphology
forced by LWD influence were included in the database.

[8] Prior to conducting the statistical analyses described
below, we examined log-log plots of channel slope versus
drainage area by channel type for study reaches in the five
regions (Figures 1 and 2). Slope-area plots are used exten-
sively to detect transitions from diffusive to fluvial erosion
process dominance [Montgomery and Dietrich, 1989;
Tarboton et al., 1991; Montgomery and Foufoula-Georgiou,
1993] and in modeling as a diagnostic to distinguish
between orogenic regime [Tucker and Whipple, 2002].
Chin [2002] was able to discriminate between cascade,
step-pool, and pool-riffle channels using slope-area plots
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Figure 1. Channel slope (m/m) versus upstream

drainage area (km?) for each site considered in the

CART analysis. Markers indicate the channel types considered in the analysis. A sharp transition in
channel slope exists between step-pool and pool-riffle streams, although both of these channel types
occupy a broad range of upstream area. Cascade and plane-bed channels are also difficult to discriminate
from step-pool and pool-riffle channels, respectively.

for channel reaches in the Santa Monica Mountains,
California. Montgomery et al. [1996] had some success
distinguishing between bedrock and alluvial channels in
forested drainages using a similar plot. However, the data
of Montgomery et al. [1996] exhibit overlap in channel slope
between bedrock and alluvial stream types as well as
considerable variation in slope conditioned on drainage area.
The slope-area plots exhibit a degree of scatter, but scaling
appears consistent with fluvial erosion that in the mean
sense, could reasonably be described using one power law
relationship (Figures 1 and 2). A sharp transition between the
channel slope of step-pool and pool-riffle channels is evi-

1.0000

dent, although both of these channel types are observed over
a broad range of basin area with a high degree of overlap
(Figure 1). The slope-area relationship does little to stratify
cascade channels from step-pool channels and plane-bed
from pool-riffle channels (Figure 1). Moreover, the channel
slope-area relationship does not adequately discriminate
between the different regions within the data set (Figure 2).
When taken alone, these slope-area plots are insufficient to
disaggregate step-pool versus cascade and pool-riffle versus
plane-bed channels. With the possible exception of the
Colorado Front Range data, variability in channel types
within a hydroclimatic region makes it difficult to use
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Figure 2. Channel slope (m/m) versus upstream drainage area (km?) for each site considered in the
CART analysis. Markers indicate the regions considered in the analysis. The channel slope-drainage area
relationship alone is unable to provide a systematic discrimination between the regions.
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slope-area plots as a means to distinguish hydroclimatic
regions from one another.

2.1. Examination of Scale Dependence of
Channel-Reach Types

[s] Previous work has been successful in discriminating
different channel types using only channel-reach bed slope
within a hydroclimatic region or among watersheds of similar
size [Grant et al., 1990; Montgomery and Buffington, 1997].
A reasonable extension of previous work is to consider
watersheds across diverse hydroclimatic regions and basin
sizes to determine whether channel-reach types are sensitive
to hydroclimatic variables and basin scale, respectively. To
investigate whether channel-reach morphology depends on
basin scale, we seek a combination of channel-reach slope
and upstream drainage area that reflects the balance between
eroding and resisting forces at a site. While local streambed
slope approximates the average rate of flow energy dissipa-
tion per unit channel length for a given total discharge,
streambed slope is less useful as a measure of erosive
capacity if not scaled by unit discharge, depth, or a
corresponding surrogate measure.

[10] Sediment transport capacity along a stream is related
to the energy dissipation per unit area per time or specific
stream power (w) in a channel reach [Bagnold, 1980]:

YOS
0=, (1)
where <y is the specific weight of the water-sediment
mixture, O is volumetric discharge, Sy is friction slope, and
w is channel width. In equation (1) it is often assumed that
friction slope is equivalent to bed slope (Sy), although
such an assumption assumes steady uniform flow at
discharge (Q).

[11] Channel width has been shown to be a function of
discharge as [Leopold and Maddock, 1953]

w= C()Qb7 (2)

where the exponent (b) has a typical value near 0.5 for
single-thread gravel channels [Hey and Thorne, 1986;
Knighton, 1998]. Furthermore, the upstream drainage area
(A4) is often related to discharge (Q) as

Q=c4. (3)
Combining equations (1), (2), and (3) yields
w o SpA91=), (4)

Values of d have been reported to vary between 0.6 and 1.0
[Cathcart, 2001; Eaton et al., 2002; Jennings et al., 1994;
Knighton, 1987], and we assume the midpoint of this range
(i.e., d = 0.8) for the present work. Setting b and d equal to
0.5 and 0.8, respectively, yields an index of specific stream
power (SoA%*) for all 270 reaches in the database. Channel
bed slope and specific stream power index values for each
stream are plotted against channel morphology on box-
whisker plots. While the values of » and d we used are
consistent with previously reported values, these parameters
exhibit some variability that we did not incorporate into the
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analysis of specific stream power that follows. The
sensitivity of specific stream power to b is
Oow

T —dIn(A4)SeA/1Y) = —din(4)w, (5)

while the sensitivity to d is

% o (1 = b) In(A4)Spd!1=?) = (1 — b) In(4)w. (6)
Equations (5) and (6) imply that for slope and area given,
the sensitivity of specific stream power to b and d is linearly
proportional to those parameters and to the value of specific
stream power. Hence the specific stream power index is
more sensitive to parameter uncertainty in environments of
high specific stream power.

[12] Classification and regression trees (CARTS) [Breiman
et al., 1984] were used to develop models for predicting
stream type with channel bed slope, drainage area, total
stream power (estimated as Sy4), and Sy4°? included as
potential splitting variables. CART analysis yields binary
decision trees created from learning data where the response
variable is partitioned into groups (nodes) with minimized
variance, maximized similarity, and increasing purity
[De’ath and Fabricus, 2000]. Each node is a decision that
leads to a branch of the tree, and either to another decision
node or to a terminal node. Terminal nodes (predicted
results) are a class from the learning data set.

[13] Classification trees have several benefits over other
classification techniques. Data can be categorical, continu-
ous, or mixed; there are no required assumptions regarding
the underlying distribution of the data; the errors have no
assumed or required distributions; and missing data do not
require exclusion of records [Breiman et al., 1984]. Fur-
thermore, CART analysis is well suited to identifying
thresholds, interactions, and nonlinear relationships between
predictor and response variables [lorgulescu and Beven,
2004]. Because variables can be used repeatedly to split
data, CART can illuminate scenarios where, for example,
the associated change in a response variable conditioned on
a change in a predictor variable is scale dependent. This is
in contrast to discriminant analysis (DA), which may
suggest that such a variable is an insignificant predictor of
the response variable.

[14] Ideal classification trees are those with a small
relative cost (Rc) and a low misclassification rate. In
addition to these criteria, we endeavored to minimize the
number of predictor variables, maintain an ability to phys-
ically interpret models, and focus on variables that are easily
measured or estimated. We used the Gini index as the
splitting criteria because it is the only splitting rule that is
a direct measure of node impurity and is typically preferred
in situations where computational burden is not limiting
[Breiman et al., 1984]. To aid in model selection, we tested
the robustness of classification trees using a tenfold cross
validation.

[15] For comparative purposes, we also used discriminant
analysis to predict channel types using channel bed slope
and S,4°* as predictor variables. Discriminant analysis
will often outperform CART when predictor-predictand
relationships are highly linear. Minitab®™ R14.1 (http://
www.minitab.com) was used to create linear discriminant
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Figure 3. Long-term mean monthly precipitation (mm) normalized by mean annual precipitation (mm)
for each of the regions considered. The seasonal distribution of precipitation throughout the calendar year
varies between regions. January corresponds to month 1.

functions using a leave-one-out cross validation to test for
robustness and ensure results are not overly optimistic. Both
predictor variables were log-transformed using a perturba-
tion of one before analysis to improve compliance with
model assumptions.

2.2. Dependence of Channel-Reach Morphology on
Hydrology and Climate

[16] At the watershed scale, Zaprowski et al. [2005]
demonstrate a positive correlation between profile concavity,
maximum annual discharge, and precipitation intensity in a
tectonically stable region, demonstrating a connection
between climatic forcing and sediment transport as modulated
by hydrology. Provided that gradient is an important (but not
exclusive) determinant in the distribution of channel types,
long-profile sensitivity to hydroclimatology suggests channel
type sensitivity to hydroclimatology.

[17] The assumption that drainage area upstream of a
channel reach is a surrogate measure of some geomorphi-
cally significant discharge in a manner following equation
(3) is complicated, in part, by hydroclimatic variation
among channel reaches in the data set. For example, the
constant of proportionality in equation (3), ¢, varies with
many factors including climate, soils and lithology, and
regional vegetation characteristics, and has been shown to
vary among hydroclimatic regions [Eaton et al., 2002].
Assuming the slope and area scaling remains the same, this
would nevertheless imply that the estimate of reach-scale
specific stream power derived in equation (4) would vary
among regions through differences in the constants of
proportionality. For these reasons, we hypothesize that
variation in hydroclimatic characteristics among watersheds
is a significant source of loss in predictive power in the
classification tree approach outlined above. For example,
hydroclimatic regions with comparable annual precipitation
may have distinctly different seasonal runoff patterns that
result in higher discharge magnitudes per basin area where
the bulk of annual runoff is compressed within a relatively
narrow window of time.

[18] In the present study we investigate whether scaling
channel slope by 4°* to produce an estimate of specific
stream power may be limited by interregional hydroclimatic
variability. However, because the majority of available
study sites lack spatial coordinates and are not located at
discharge gaging stations, we must infer the role of hydro-
climatic processes indirectly. An implication of our hypoth-
esis that channel types occupy distinct ranges of specific
stream power and that drainage-area-based indices of spe-
cific stream power indirectly incorporate hydroclimatic
processes is that specific stream power for a particular
alluvial channel type within a relatively homogeneous
hydroclimatic region should be narrowly distributed about
a mean value. Given imprecise knowledge of study site
locations, our stratification according to hydroclimatic re-
gion makes the necessary assumption that the geographic
proximity of sites within a particular region are influenced
by similar climatic forcing and exhibit similar character-
istics of runoff response.

[19] The data set we examine contains at least nine step-
pool channels (the most frequently occurring channel type
within the data set) for each hydroclimatic region, making
step-pool channels an appropriate subset of the data for
investigating the influence of hydroclimatic gradients on the
efficacy of drainage-area scaling in stream classification.
For each hydroclimatic region, monthly precipitation data
were obtained for a continuous period no less than 10 years
in length from the gauging station nearest to the approxi-
mate locations of the study reaches from the National
Climatic Data Network (NCDC). We first verified that the
precipitation process in each region is approximately sta-
tionary over the period of record. The nondimensional
seasonal cycle (long-term mean monthly precipitation nor-
malized by mean annual precipitation) suggests that the
timing of precipitation delivery throughout the year varies
significantly by region (Figure 3). We use two variables
computed from the precipitation records that represent the
magnitude and variance in the seasonal cycle of precipita-
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Table 2. Summary of Hydroclimatological Data Used in the Analysis

National
Climate Data

National Climate

Center
Cooperative
Identification

U.S. Geological

Discharge
Skewness

Mean Specific

Stream Power, km®®

Mean Channel
Slope, m/m

Survey Gage

U.S. Geological

Data Center Gage

cv,

P, mm

Region

Name

Survey Gage

Name
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2.20

0.260

0.0487

0.33

531.30

Front Range,

06721500 North Saint Vrain, near

Allenspark,

50183

Colorado Rockies
Northern Rocky

Colorado
Troy, Montana

Allen’s Park, Colorado

Yaak River near Troy,

2.68

0.170

0.0695

0.39

623.24

12304500

248390

Mountains

Cascades

Montana
Mashel near La Grande,

4.34

0.143

0.1038

0.45

980.31

12087000

LaGrande,

454360

Washington
SF Stillaguamish River near

Washington
Concrete,

5.14

0.123

0.0542

0.58

1713.88

Cascades

12161000

451679

(Finney Creek)
Santa Monica

Granite Falls, Washington

Topanga Creek Near

Washington
Santa Monica

36.73

0.076

0.0478

07

1.

327.09

11104000

047953

Mountains

Topanga Beach, California

Pier, California
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tion. The mean annual precipitation (P,,,) is simply the sum
of the seasonal cycle and physically represents the long-
term averaged volume of annual precipitation delivered to a
basin. The coefficient of variation in mean monthly precip-
itation (CV},) provides insight into the seasonality of pre-
cipitation delivery to the basin throughout the year.

[20] Characteristics of streamflow in each region are
determined through analysis of a streamflow record of at
least 10 years in length from a U.S. Geological Survey
(http://waterdata. usgs.gov/nwis/sw) reference gage on an
unregulated river nearest to the approximately known loca-
tions of the study reaches. The mean annual discharge
(Ona), the discharge corresponding to the 2-year recurrence
interval (Q,), and the coefficient of skew of daily discharges
are estimated for each flow record. An estimate of runoff
per unit basin area is computed for each hydroclimatic
region by normalizing Q,,, and O, by the upstream drainage
area at the gage. Normalizing O, by 0,,, gives a measure of
the spread in the distribution of floods and is interpreted to
reflect the degree of hydrologic flashiness. Coefficients of
skew of daily streamflow data obtained from the records
represent the asymmetry of the daily discharge distribution
and can be interpreted as a measure of the relative frequency
of occurrence of low- and high-magnitude flows. For a
unimodal distribution, a higher skew coefficient implies
greater probability density in the left tail (below mean
flows) relative to the right tail (above mean flows). These
data, along with mean values of SeA%* by physiographic
region, are presented in Table 2.

[21] Recurrence intervals of step-forming events in moun-
tain channels have been reported to range from approxi-
mately 10 years to greater than 50 years [Sawada et al.,
1983; Grant et al., 1990; Chin, 1989, 1998; Ergenzinger,
1992]. The flow record lengths considered in our analysis of
hydroclimatology preclude estimation of extreme events in
all hydroclimatic regions without extrapolation. Hence,
while we would expect a correlation between regional mean
values of the specific stream power index for step-pool
channels and, for example, the ratio in magnitudes of
25-year and 2-year recurrence interval events, the lengths
of the flow records do not adequately capture this relation-
ship for all hydroclimatic regions. It should be noted that this
analysis, while isolating step-pool channels for additional
analysis, is not intended to suggest that the variability
introduced via drainage area scaling is only relevant to the
step-pool channel type. Furthermore, we hypothesize that
surrogate measures of specific stream power for other
channel types are likely to exhibit correlation with different
statistics of the climate and discharge distributions.

3. Results
3.1. Scale Dependence of Channel-Reach Types

[22] Channel-reach types exist within intergrading ranges
of bed slope and the index of specific stream power; scaling
channel bed slope by 4%* improves separation in inner and
outer quartile ranges between pool-riffle and plane-bed
channels, and step-pool and cascade channels (Figures 4
and 5). Separation in inner and outer quartile ranges between
plane-bed and step-pool channel types, however, decreases
as a result of scaling bed slope by 4°. The tenfold cross-
validated classification tree with the lowest relative cost
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Figure 4. Channel slope (m/m) and specific stream power
index (km®®) versus channel type for all regions. Hatched
data represent specific stream power, open boxes represent
channel slope. Boxes correspond to the inner and outer
quartiles, and whiskers correspond to inner and outer tenths.
Open circles are outliers of channel slope, crosses are
extreme values of channel slope, and open squares are
outliers of specific stream power. High outliers are 1.5—
3 times the inner quartile range above the 75th percentile,
while low outliers are 1.5—3 times the inner quartile range
below the 25th percentile. Extreme values are greater than
3 times the inner quartile range above or below the 75th and
25th percentiles, respectively.

(Rc = 0.365) resulting from the CART analysis (Figure 6)
has a correct classification rate of 76.3% (Table 3).
Channel bed slope and Sy4°* emerged as the most
significant predictor variables in this tree with variable
importances of 100 and 98.9, respectively. Watershed
drainage area and Sp4 had variable importances of 32.1
and 29.9, respectively. Linear DA resulted in a maximum
74.8% overall correct classification rate using channel bed
slope and SpA%*. The discriminant function predicts pool-
riffles (Table 4) with better accuracy than CART, but
overall model performance was not as robust.

3.2. Variability of Step-Pool Energy Levels and
Hydroclimatic Influence

[23] Although, as expected, P, correlates well with O,,,
(and less well with Q,), there is little correspondence
between mean values of the specific stream power index
and P,,,, O,.4> Or O, among regions. However, there appear
to be significant relationships between climatic variability,
hydrologic variability, and regional means of the specific
stream power index for step-pool channels. Discharge skew
coefficient demonstrates power law dependence on CV,
with a coefficient of determination (+*) of 0.97 (p <
0.003; Figure 7). When the Santa Monica Mountains, which
demonstrate a higher discharge skew relative to other
regions, are excluded from the plot, 7* decreases to 0.92
(p < 0.05; Figure 7). Regional mean of the specific stream
power index decreases nonlinearly as discharge skew coef-
ficient increases with an 7> of 0.85 (p < 0.07; Figure 8).
When data from the Santa Monica Mountains, which dem-
onstrate a low mean value of S,4%* relative to the other
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Figure 5. Channel slope (m/m) and specific stream power
index (km"®) versus channel type for the North Saint Vrain
data. Hatched data represent specific stream power, open
boxes represent channel slope. Boxes correspond to the inner
and outer quartiles, and whiskers correspond to inner and
outer tenths. The open circle is an outlier of channel slope.
High outliers are 1.5—3 times the inner quartile range above
the 75th percentile, while low outliers are 1.5—3 times the
inner quartile range below the 25th percentile. Extreme values
are greater than 3 times the inner quartile range above or
below the 75th and 25th percentiles, respectively.

regions in addition to a relatively high discharge skew
coefficient, are removed, 7~ increases to approximately 0.87
(p < 0.06; Figure 8). Power law dependence also exists
between regional means of the specific stream power index
and s,,. When all regions are considered together, this power
law scaling produces an 72 value of 0.85 (p < 0.03; Figure 9)

and when the Santa Monica Mountains are excluded, »*

increases to 0.90 (p < 0.05; Figure 9). Analysis showed no
significant correlation between discharge skew and drainage
area for the streamflow gages.

4. Discussion
4.1.

[24] These results demonstrate potential benefits of using
drainage-area scaling, specifically the index of specific
stream power computed via equation (4), in classifying and
predicting channel types and their associated habitat charac-
teristics across landscapes. The classification tree model

Prediction of Channel-Reach Type

Slope <0.025

Slope < 0.025 Slope > 0.025
S,A% <0.055 S,A% > 0.055 S,A%4 < 0.206 SoA%4 > 0.206
| | | |
| Class = Pool-riffle | |Class = Plane-bed | | Class = Step-pool | | Class = Cascade |

Figure 6. Tenfold cross-validated classification tree that
predicts channel-reach morphology with 76% accuracy (R¢
of 0.365).
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Table 3. CART Model Classification Performance for Four Stream Types

Actual Class Cascade Plane-Bed Pool-Riffle Step-Pool Total Cases Total Correct Percent Correct
Cascade 13 0 0 2 15 13 86.7
Plane-bed 0 10 3 2 15 10 66.7
Pool-riffle 0 22 81 2 105 81 77.1
Step-pool 25 5 3 102 135 102 75.6
Total 270 206 76.3

indicates that channel slope is a strong indicator of transport
versus supply-limited channels (using the terminology of
Montgomery and Buffington [1997] for convenience). How-
ever, consideration of some metric of local-flow energy such
as specific stream power, shear stress, or flow resistance
appears necessary for accurately distinguishing between
channel types within supply- and transport-limited regimes.
The index of specific stream power discriminates between
cascade and step-pool channels better than slope (Figures 4
and 5). Cascade channels exhibit the highest correct classi-
fication rate in the CART model (Table 3). This indicates
that the CART model can largely resolve cascade and step-
pool channels, in spite of the significant overlap in channel
slope and drainage area in these two channel types seen
in Figure 1 and the relatively small number of cascade
channel types within the data set.

[25] The same conclusion is reached for comparisons of
plane-bed and pool-riffle streams. Figures 4 and 5 suggest
that plane-bed channels and step-pool channels have similar
values of So4%*, yet plane-bed channels are closer to pool-
riffle channels in terms of channel slope. In both the CART
and linear DA models, plane-bed channels exhibit the
lowest correct classification rate (Tables 3 and 4). Percep-
tual differences in what constitutes a plane-bed channel
undoubtedly affect model accuracy in classifying plane-bed
streams, although this is largely an irreducible source of
uncertainty in this study. Another possible interpretation of
this result lies in the hypothesized origins of plane-bed
channels. Montgomery and Buffington [1997] suggest that
plane-bed channels, in which rhythmic occurrence of bed
forms is absent and which can serve as sediment sources or
sinks, represent a transition from supply- to transport-
limited conditions. It is in these reaches of the channel
network where channel response is increasingly dependent
on downstream divergence in boundary shear stress or
specific stream power in addition to magnitude. The drain-
age areas of step-pool and plane-bed channels in our data set
average 23.8 and 306 km?, respectively, and are statistically
different (p < 0.02) in a ¢ test with unequal variance. Thus
plane-bed channels may occur where values of the specific
stream power index are comparable to values for step-pool
channels, but a lack of step-forming clasts of sufficient size
relative to channel width [Curran and Wilcock, 2005]

resulting from downstream fining and/or diminished hill-
slope coupling [Church, 2002] inhibits step formation.

[26] The CART model slightly outperformed DA in
classification accuracy and provides a basis for straightfor-
ward physical interpretation. Our ability to predict channel-
reach morphology would not be substantially diminished
using DA alone, but understanding the physical influences
and delineating quantitative thresholds would be more
difficult. Furthermore, the subtle differences between results
of CART and linear DA analysis suggest the presence of
nonlinear interactions between predictor and response var-
iables that is better captured in the CART model structure.
The CART results indicate a process shift associated with
slopes in the vicinity of 2.5% and also lend support to the
argument that channel types represent configurations that
are suited to fairly discrete ranges of energetic conditions.
Our results are consistent with those of Montgomery et al.
[1999] and Buffington et al. [2004], who suggest that this
shift in process dominance occurs at channels slopes in the
vicinity of 3%, and use this criterion in predicting network-
wide distributions of spawning substrates.

[27] Our results suggest that channel types delineated by
Montgomery and Buffington [1997] do not satisfy the
hypothesis of equal energy expenditure per unit bed area
(Figures 4 and 5) suggested in the optimal channel network
(OCN) model of Jjjasz-Vasquez et al. [1993]. In fact, it is
this apparent departure from optimality, as defined in the
OCN framework, which gives rise to the utility of stratify-
ing channel types according to a specific stream power
index. It should be noted, however, that the OCN and other
models that hypothesize equal energy expenditure per unit
bed area assume that channel slope is the principal degree of
freedom that adjusts to meet the extremal state. However, in
natural channel networks, channel-bed configuration and
substrate size represent two of many additional degrees of
freedom that may adjust to satisfy the governing equations.

4.2. Regional Variation in the Specific Stream Power
Index and Hydroclimatic Influences

[28] The investigation of whether hydroclimatic variables
are correlated with the index of specific stream power used
in the channel-type models is motivated by two consider-
ations. First, most of the stream reaches that comprise our

Table 4. Linear Discriminant Analysis Model Classification Performance for Four Stream Types

Actual Class Cascade Plane-Bed Pool-Riffle Step-Pool Total Cases Total Correct Percent Correct
Cascade 10 0 0 5 15 10 66.7
Plane-bed 0 10 5 0 15 10 66.7
Pool-riffle 0 18 87 0 105 87 82.9
Step-pool 17 19 4 95 135 95 70.4
Total 270 202 74.8
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Figure 7. Discharge skew coefficient (dimensionless) versus coefficient of variation in mean monthly
precipitation (dimensionless). Each point represents one region corresponding to a subset of the step-pool
data. The Santa Monica Mountains exhibit a large coefficient of discharge skew relative to the other
regions. Discharge skew coefficient is positively correlated with the coefficient of variation in mean
monthly precipitation. Using a power law fit, 7> = 0.97 when all regions are considered and »* = 0.92

when the Santa Monica Mountains are excluded.

data set are on ungaged streams, streams with inadequate
discharge records, or are on an altitudinal gradient along the
same stream. This consideration necessitates the use of
drainage area as a surrogate of geomorphically significant
discharges. Second, these data span a range of climatic
regions in terms of both volume and timing of precipitation
delivery, and a range of hydrologic response. Together,
these considerations suggest that the predictive power of
our CART and DA models are reduced because climate and
hydrology are sources of variability lumped into the values
of drainage area used to estimate specific stream power. Our
selection of step-pool channels to address this concern is an

1.000

artifact of having at least nine step-pool channels per
hydroclimatic region. We underscore that we cannot esti-
mate the amount of predictive power lost in the CART
models owing to hydroclimatic trends existing within the
data set, for lack of adequate numbers of each channel type
within each hydroclimatic region.

[29] Our analysis of step-pool streams suggests that
hydroclimatic factors may be related to interregional vari-
ation in the specific stream power index. Specifically,
climate is associated with characteristics of discharge dis-
tribution (Figure 7), and variation in discharge skewness is
also related to regional mean So4%* (Figure 8). Moreover,

0.100
Santa Monica Mountains excluded:

?=0.88

Mean specific stream power index (km"*)

0.010

OAll Regions:
=0.73

1.00

10.00

100.00

Coefficient of discharge skewness (dimensionless)

Figure 8. Regional mean of specific stream power index (km®*®) of step-pool channels is negatively
related to discharge skew coefficient (dimensionless). A power law fit yields a value of /* = 0.73 when all
regions are considered and 7 = 0.88 when the Santa Monica Mountains, which demonstrate a large

discharge skew coefficient, are excluded.
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Figure 9. Regional mean of specific stream power index (km"®) of step-pool channels is negatively
related to coefficient of variation in mean monthly precipitation (dimensionless). A power law fit yields a
value of 7% = 0.85 when all regions are considered and * = 0.90 when the Santa Monica Mountains are

excluded.

increasing nonuniformity in the seasonal distribution of
precipitation is associated with decreasing regional mean
SoA%* (Figure 9). Hence these results indicate that scaling
bed slope by 4% to yield an index of local specific stream
power and, more generally, using drainage area as a
surrogate for geomorphically significant discharge charac-
teristics introduce variability associated with climate. The
variability introduced by assuming drainage area as a
discharge surrogate appears to be related to the degree
uniformity of the seasonal precipitation distribution, al-
though apparently not the total mean annual precipitation.
[30] While the present investigation does not establish
causal links between climate and regional spatial distribu-
tions of local-channel morphology, the influence of seasonal
variation in precipitation within the data set raises some
intriguing questions regarding linkages between climate,
basin hydrologic response, and geomorphic processes.
One interpretation of the positive correlation between the
coefficient of variation of the seasonal precipitation cycle
and discharge skew coefficient is that a more seasonally
variable distribution of precipitation leads to a distribution
of flows with high outliers significant enough to result in a
high discharge-skew coefficient. Increasing CV), (ie., in-
creasing seasonality) generally implies narrower windows
of time over which annual runoff production may occur. As
the window of time each year during which runoff occurs
narrows, the frequency distribution of flows is increasingly
dominated by base flow, and the skew of the discharge
distribution can be expected to increase. Therefore increas-
ing seasonality is expected to be associated with increasing
discharge skew (Figure 8), which in turn is associated with
greater runoff per unit area during flood flows. For example,
Sanborn and Bledsoe [2006] found that the ratio of precip-
itation in the wettest three months to the driest three months
is of first-order importance to discharge skew in several
regions of the Pacific Northwest and Rocky Mountains.
[31] Equilibrium channel response models [e.g., Lane,
1955] suggest an inverse relationship between slope and

dominant discharge for a given sediment load. Because
step-pool channels adjust to high-magnitude flows, increas-
ing runoff per unit area is expected to be associated with
decreasing slope for a particular drainage area, implying an
inverse relationship between both precipitation seasonality
and discharge skew, and the mean index of specific stream
power for a region. The inverse relationship could poten-
tially arise because step formation is most influenced by
flow conditions ranging in recurrence interval from approx-
imately 10 years to greater than 50 years [Sawada et al.,
1983; Grant et al., 1990; Chin, 1989, 1998; Ergenzinger,
1992]. This hypothesis, however, could not be tested given
that the hydroclimatic records available are insufficient to
estimate the magnitude of step-forming events, given the
relatively long recurrence intervals associated with such
events.

[32] If the channel-forming flow magnitude is taken to be
the effective discharge [Wolman and Miller, 1960; Emmett
and Wolman, 2001], our finding also appears consistent
with previous studies that find an association between
increasing flow distribution skew and effective discharge
[Baker, 1977; Andrews, 1980; Andrews and Nankervis,
1995]. Goodwin [2004] shows analytically that effective
discharge magnitude is linearly proportional to the product
of skew and standard deviation of the flow distribution for a
gamma distribution (it should be noted that skew and
variance are not independent). This suggests that in addition
to uncertainty in hydraulic reconstruction techniques [e.g.,
Grant et al., 1990], and other factors such as supply and
size of clasts [Curran and Wilcock, 2005] and geologic
context, a degree of the variability in recurrence intervals of
step-forming events observed in the literature could result
from variability in hydroclimatic regimes. In the present
study the fact that skew coefficient is calculated from daily
flows (and thus with substantially more data points than
events with a given annual maximum recurrence interval)
may be a secondary reason for its significance in relation to
regional values of SeA°*.
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[33] Higher moments of the underlying distribution of the
discharge regime such as discharge skew coefficient may
account for some variation in the energy dissipation char-
acteristics of step-pool channels, but this may not be
generally true of energy-dissipation characteristics of other
channel types. For example, pool-riffle channels generally
adjust more readily to imposed water and sediment-
discharge characteristics, and often have effective dis-
charges with recurrence intervals of 1-2 years [Whiting et
al., 1999; Emmett and Wolman, 2001]. A similar analysis
conducted with pool-riffle channels may reveal that, for
example, Q5 correlates better than discharge skew with
central tendencies in specific stream power of this type
among hydroclimatic regions.

[34] Formation of cascade-type channels is sensitive to
stochastic sediment delivery [Nanson, 1974; Griffiths, 1980;
Ashida et al., 1981; Whittaker, 1987b], implying that the
signature of hydroclimatic processes lumped in drainage
area (and thus a drainage areca—dependent index of specific
stream power) is less detectable. For these channels, the
influence of climate may be in the initiation of landslides
and debris flows, and estimates of local specific stream
power may more directly relate to recurrence intervals of
mass movement—inducing precipitation events. This argu-
ment, however, is contrary to our findings indicating that
drainage area—dependent indices of specific stream power
are useful in identifying cascade-type channels. Further, in
environments where freeze-thaw processes, seismic distur-
bance, or volcanism are primary agents of mass movement
initiation, there may be no detectable dependence on
hydroclimatology.

[35] Large variations in local geomorphic attributes over
relatively short timescales can exist [Benda and Dunne,
1997a, 1997b; Benda et al., 2004], even when a watershed
approximates a state of dynamic equilibrium with respect to
sediment fluxes. This results, in part, from internal variabil-
ity in driving processes, spatiotemporal variations in the
response, and external stochastic drivers such as wood, fire,
and volcanism. Because this implies that reach-scale geo-
morphic attributes are likely correlated with both long-term
hydroclimatic trends and individual hydrologic events,
caution must be exercised when interpreting trends between
hydroclimatic and geomorphic data from sampling intervals
shorter than reach-scale response times of the system. This
is especially true of channel types having morphologies that
primarily reflect rare events with large recurrence intervals.
Geologic context and historical setting particular to the data
set being studied are thus critical considerations when
investigating interactions between climate, hydrology, to-
pography, and regional spatial distributions of channel

types.

4.3.

[36] Our findings underscore the need for caution when
using drainage area as a discharge surrogate in scaling
channel slopes. We suggest that the influence of hydro-
climatic gradients be directly investigated when possible
and normalized out of drainage area in comparisons of
watersheds across heterogeneous regions. For example,
Eaton et al. [2002] find significant regional variability in
proportionality constant of power law relationships between
20-year flood magnitude and drainage area in British

Implications for Fluvial Classification
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Columbia. They attribute much of this variability to spatial
patterns in hydroclimatic regimes within the province.
Hence it is likely that correlations between slope-drainage
area surrogates for flow energy and landscape distributions
of channels types will reflect region-specific hydroclimatic
signatures and thus necessitate regional calibration of pre-
dictive models. Despite these complications, the association
between the annual distribution of precipitation and regional
mean values of the index of specific stream power identified
in this study suggests that combining slope-drainage area
scaling with appropriate climate descriptors could poten-
tially improve interregional models for predicting moun-
tain channel types. This could be especially advantageous
where hydrologic data are sparse relative to climatic data.

[37] The ability to increase discrimination among chan-
nel-reach types by scaling slope with drainage area, prop-
erly normalized for hydroclimatic influence as necessary,
also underscores potential benefits for existing classification
systems. For example, the complexity of the widely used
classification system of Rosgen [1994] is substantially
increased through the introduction of channel subtypes
(e.g., B3a, B3, B3c) to account for within-class variability
in slope. Scaling slopes with drainage area or incorporating
hydroclimatic variables in developing surrogate measures of
specific stream power can potentially reduce variability, and
improve the physical basis and parsimony of existing
classifications. There is currently no unified channel typol-
ogy that explicitly links climate, hydrology, and reach-scale
geomorphic processes, although recent work represents a
move toward such a classification [Poff et al., 2006].

[38] Regional stratification of channel-type data based on
existing biophysical classifications (e.g., ecoregions) may
be inappropriate because these classifications poorly resolve
hydroclimatic variation present at finer spatial scales in
some regions. For example, mechanisms driving hydrologic
regime can vary from snowmelt to rain-on-snow to frontal
rain within a mountainous ecoregion. Such classifications
also may not adequately account for geologic influences on
discharge associated with heterogeneity in basin lithology
[Tague and Grant, 2004]. Furthermore, bank vegetation and
materials can substantially influence downstream hydraulic
geometry relationships [Andrews, 1984; Hey and Thorne,
1986; Anderson et al., 2004] and therefore indirectly affect
specific stream power.

[39] Mapping of network- or regional-scale distributions
of stream physical habitat could also benefit from refine-
ments of this approach. Assuming that channel-reach types
represent equilibrium forms to dissipate energy supplied by
a range of flow conditions as suggested by Montgomery and
Buffington [1997], a map bracketing the ranges of specific
stream power over which particular channel-reach types
exist throughout a channel network could be used to predict
geomorphic attributes of putative ecological significance
and potentially link spatial distributions of these attributes
with landscape patterns of biotic variation. Such an ap-
proach could also be used to map the relative sensitivity of
channel types to human influences [Montgomery and
Buffington, 1998; Montgomery and MacDonald, 2002].
A map based solely on network specific stream power
would, however, represent possible channel types only in
the absence of external forcing due to such factors as LWD
input, debris flow deposit, and tributary influence. For
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example, in their effort to predict locations of reaches
suitable to salmon spawning, Lunetta et al. [1997] reported
that tributary confluences are problematic.

[40] In the present study, a lack of accurate locations for
the majority of field sites prevented us from incorporating
information related to valley confinement, LWD loading,
and lithology. Including these variables could potentially
yield substantial improvements in models for predicting
channel types with geospatial data. Connectivity and prox-
imity of channels to valley walls, for instance, affect the
amount and frequency of colluvial material delivery to
channels. Additionally, others have noted that valley char-
acteristics directly influence the effectiveness of channel-
forming events [Costa and O’Connor, 1995; Miller, 1995].
Measures of valley entrenchment and hillslope connectivity
in the vicinity of a sample location estimated from digital
elevation models (DEMs) could be used with CART mod-
eling to stratify portions of the channel network where
floods are confined and the potential of forcing due to
colluvial input from adjacent hillslopes exists.

[41] Similarly, identifying regions of the network where
LWD locally affects channel dimensions may also prove
useful in predicting local-channel morphology using geo-
spatial data. Lunetta et al. [1997] used forest seral stage
spatial data in the vicinity of channels to infer loading
rates of LWD and demonstrate an ability to predict
reaches preferential for salmonid spawning beds. New
high-resolution data (light detection and ranging (lidar))
have also been successfully used to infer LWD loading
rates [Buckley et al., 2000]. These techniques could
potentially be combined with elements of the present
study to identify locations within channel networks where
recruitment of LWD would have significant effects on
energy dissipation characteristics and morphology.

[42] Both basin-wide and local lithology influence local-
channel morphology as well as stream substrate size [Hack,
1957; Werritty, 1992; Kodama, 1994]. Chin [1989] notes
that the mobility of steps is largely a function of particle
size. Lithology also constrains the influence of groundwater
on hydrograph shape [Tague and Grant, 2004] and plays a
crucial role in sediment supply, although sediment supply is
difficult to assess using geospatial data. Accounting for
lithology, both locally and basin-wide, is likely to better
inform efforts to predict local-channel morphology. Doing
so within the CART framework may be especially straight-
forward since CART predictor variables may be categorical.

[43] Formation of characteristic morphologies in mountain
channels may also depend on the time rate of change of flow
conditions in addition to some sustained high flow. For
instance, anecdotal reports suggest that step formation in
Pacific Northwest streams may be influenced by the steep-
ness of the receding limb of the annual maximum hydrograph
(G. Grant, personal communication, 2002), and previous
work suggests that step formation occurs during the falling
limb of hydrographs of extreme events [Sawada et al., 1983;
Whittaker, 1987a; Warburton, 1992]. In some hydroclimatic
regions, channel adjustment is strongly forced by colluvial
sediment inputs (and thus an imposed sediment size distri-
bution) to channels through landsliding and debris flows. In
these regions the influence of climate on the network-wide
distribution of step-pool channels may be more closely linked
with climatological events that deliver sediment to channels
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through mass movement. This hints at an additional realm of
processes that could better inform development and applica-
tion of fluvial classifications.

[44] Ultimately, comparability of field investigations of
channel reaches and watershed processes is of fundamental
importance to classification and in determining the primary
drivers influencing channel morphologies within a drainage
network. For example, steps can be alluvial features that
exhibit discernible signatures in the longitudinal frequency
domain that imply structured periodicity [Chin, 2002], but
may also be the result of local geologic controls or input of
colluvial material [Zimmerman and Church, 2001], local-
bed roughness impeding transport of step-forming grains
[Curran and Wilcock, 2005], or low channel width-to-depth
ratio [Grant et al., 1990]. Restricting classification of step-
pool sequences to those channels in which steps occur
rhythmically at the intervals reported by Grant et al.
[1990] may imply a narrower range of basin scale and
consequently a narrower range in specific stream power.
Hence the notion of what constitutes a step-pool channel, for
instance, partially determines the efficacy of using drainage-
area scaling. Field reconnaissance will undoubtedly continue
to reveal that maps of putative channel types poorly reflect
actual conditions in some contexts, despite the inclusion of
variables describing geology, valley form, and LWD forcing
as model inputs. Departures of the map from the territory are
instructive in both efforts to refine methods of prediction
of channel morphology and targeting of field campaigns
where predictions are least certain.

4.4. Future Research Needs

[45] Several avenues of future research that extend this
work hold promise for fluvial classification, and the predic-
tion of reach-scale channel geomorphology from geospatial
data. Our findings suggest that models including slope-area
scaling, hydroclimatic influences (e.g., seasonal precipita-
tion variability and discharge skew), and other pertinent
information about the channel and valley network upstream
of a reach may facilitate the prediction of channel-reach
types using geospatial data in a geographic information
system (GIS). This assertion, however, must be qualified.
First, using only specific stream power and hydroclimatic
information as independent variables to predict channel-
reach types neglects the potentially significant roles of
LWD, local geologic control, and inputs of nonalluvial
sediment from adjacent hillslopes in forcing channel mor-
phology. Second, using a combination of bed slope and
drainage area as a surrogate measure of specific stream
power for prediction of channel-reach types necessitates an
estimate of slope from a DEM that can serve as a reliable
substitute for a channel-bed slope obtained through on-the-
ground surveying.

[46] Several previous studies have demonstrated the util-
ity of using DEMs to estimate channel slopes in the
development of predictive models at the drainage network
scale [Lunetta et al., 1997; Montgomery et al., 1998; Dalla
Fontana and Marchi, 2003; Reinfelds et al., 2004]. Using
the findings of this work, we attempted to predict the spatial
arrangement of channel types within the North Saint Vrain
watershed, where spatial coordinates of sample locations
were available. However, values of specific stream power
computed with local-channel slopes obtained from a 10-m
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DEM were unable to resolve heterogeneity in channel types
within the network. Although qualitative inspection of
longitudinal profiles reveals that currently available DEMs
are able to depict a degree of structural variation in channel
networks [Reinfelds et al., 2004], DEM resolution remains a
significant source of error in estimating local channel slope.
New DEMs such as those derived from lidar reflectance
data will undoubtedly serve to increase the accuracy of
slope estimates.

[47] These challenges aside, the ability to reliably and
accurately predict attributes of channel morphology from
readily available digital geospatial data would have many
useful applications. For instance, development of biomoni-
toring networks and protocols for biomonitoring activities
could be improved through hydrogeomorphic stratification.
Investigating the correspondence between biotic and geo-
morphic heterogeneity, or lack thereof, could be facilitated
by assessing the spatial connectivity and redundancy of
channel types throughout channel networks using a GIS.
Models for predicting the spatial arrangement of channel
types throughout a drainage network would also be infor-
mative in qualitatively describing channel response to
changes in variables acting at coarser scales. For instance,
the ability to identify linkages between channel morphology
and precipitation acting through hydrology could provide
insight into the sensitivity of the spatial arrangement of
channel types and habitats to climate change.

[48] Finally, some degree of uncertainty in the data can be
attributed to channel-type classification and field techniques
for estimating slope in channels with complex topography.
Inevitably, these factors translate to a degree of uncertainty
in the observed results that remains largely irreducible
within the constraints of this meta-analysis. Future studies
may see improved results through a concerted effort to
explicitly cope with uncertainty due to these factors, yield-
ing maps of the spatial distribution of channel types that
communicate uncertainty in channel-type predictions.
Moreover, designing field data-collection protocols around
known gradients in hydrologic and climatic processes may
make accounting for hydroclimatic factors more straight-
forward in future studies.

5. Conclusions

[49] In a data set of 270 mountain channel reaches from
five regions of the western United States, variance in a
surrogate measure of specific stream power is less than the
corresponding variance in channel slope among reaches
within a particular mountain channel type. Scaling channel
slope by 4°* also reduces the occurrence of extreme
observations within a channel type. These factors result in
a net improvement in the ability to discriminate among
channel types, and thus improved the performance of CART
and DA models for predicting channel type. CART analysis
also revealed that channel slope can be used to delineate
transport- from supply-limited channel types, while the
index of specific stream power further separates channel
types within transport- and supply-limited conditions. We
argue that using specific stream power to discriminate
between channel types has added benefits of (1) introducing
an element of scale into an existing fluvial classification,
and (2) including a physically meaningful variable closely
related to sediment-transport capacity. However, estimates
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of specific stream power based on drainage-area scaling
introduce additional variability when considering channel
reaches across a gradient of hydroclimatic influence. An
investigation of the influence of regional hydroclimatic
factors on the specific stream power index of step-pool
channels indicates a positive trend between seasonal pre-
cipitation variability and the skew coefficient of daily
discharges, and an inverse trend between the specific stream
power index and discharge skew. This suggests that climate,
modulated by hydrology, may influence the drainage net-
work positions of mountain channel types. We hypothesize
that the association with discharge skew reflects the sensi-
tivity of step-pool channels to hydrologic events with
recurrence intervals ranging from 10 to 100 years. Although
other channel types are influenced by climate (acting
through hydrology), the nature of the influence probably
varies with the sensitivity of a particular channel type to
hydrologic events of different return intervals.

[s0] Finally, a conceptual approach for predicting chan-
nel-reach types using digital geospatial data is described.
This approach makes use of specific stream power estimated
from topographic data with expected channel-reach types
assigned on the basis of bracketed values of specific stream
power over which each channel-reach type exists. Informa-
tion about local valley characteristics, LWD loading and
retention, and local and basin-wide lithology can then be
employed to modify the predicted classes and/or assess
uncertainty in the predicted spatial arrangement of channel
types. Ground inspection of predicted channel types can
then be carried out at locations throughout the channel
network to verify and adjust the model to more accurately
assign channel-reach types. The ecological significance of
channel types or coarse geomorphic patches can then be
inferred by the systematic analysis of spatial arrangements
of these units throughout a channel network. Finally,
suggestions for future research include quantification of
the effect of valley configuration on channel types, address-
ing LWD loading, accurate estimation of channel slope and
specific stream power from DEMs, and inclusion of varia-
bles to account for the role of basin lithology.

Notation

A upstream drainage area (km?).
b exponent.
¢ coefficient.
¢y function of climate, soils and lithology, and
regional vegetation characteristics.
coefficient of variation in mean monthly precipita-
tion.
d exponent.
mean annual precipitation.
O volumetric discharge (m>/s).
discharge corresponding to the 1.5-year recurrence
interval (m?/s).
0, discharge corresponding to the 2-year recurrence
interval (m?/s).
O, mean annual discharge (m>/s).
R relative cost.
r*  coefficient of determination.
So channel bed slope.
Sod  surrogate measure of total stream power (km?).
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SoA%* surrogate measure of specific stream power
(km®®).

Sy friction slope.

w  channel width (m).

v specific weight of the water-sediment mixture

(N/m?).

w  specific stream power (W/m?).
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